Mathematische Annalen

, Volume 241, Issue 1, pp 83–96 | Cite as

An application of Littlewood-Paley theory in harmonic analysis

  • Michael Cowling


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bachelis, G.F., Gilbert, J.E.: Banach spaces of compact multipliers and their dual spaces. Math. Z.125, 285–297 (1972)Google Scholar
  2. 2.
    Cowling, M.G.: SpacesA pq and FourierL p -L q multipliers, Doctoral dissertation. Flinders: University of South Australia 1974Google Scholar
  3. 3.
    Cowling, M.: The Kunze-Stein phenomen. Ann. of Math.107, 209–234, (1978)Google Scholar
  4. 4.
    Edwards, R.E., Gaudry, G.I.: Littlewood-Paley and multiplier theory. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  5. 5.
    Figà-Talamanca, A., Gaudry, G.I.: Density and representation theorems for multipliers of type (p, q), J. Austral. Math. Soc.7, 1–6 (1967)Google Scholar
  6. 6.
    Gilbert, J.E.:L p-convolution operators and tensor products of Banach spaces. II. Ann. Sci. École Norm. Sup. (to appear)Google Scholar
  7. 7.
    Herz, C.S.: Harmonic synthesis for subgroups. Ann. Inst. Fourier (Grenoble)23, 91–123 (1973)Google Scholar
  8. 8.
    Herz, C.S.: Une généralisation de la notion de transformée de Fourier-Stieltjes. Ann. Inst. Fourier (Grenoble)24, 145–157 (1974)Google Scholar
  9. 9.
    Hewitt, E., Ross, K.A.: Abstract harmonic analysis. I, II. Berlin, Heidelberg, New York: Springer 1963, 1970Google Scholar
  10. 10.
    Stein, E.M.: Topics in harmonic analysis related to the Littlewood-Paley theorem. Princeton: Princeton University Press 1970Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Michael Cowling
    • 1
  1. 1.Department of MathematicsWashington UniversitySt. LouisUSA

Personalised recommendations