Numerische Mathematik

, Volume 55, Issue 2, pp 225–246 | Cite as

Analysis of a damped nonlinear multilevel method

  • W. Hackbusch
  • A. Reusken
Article

Summary

In this paper, we present a new algorithm that is obtained by introducing a damping parameter in the classical Nonlinear Multilevel Method. We analyse this Damped Nonlinear Multilevel Method. In particular, we prove global convergence and local efficiency for a suitable class of problems.

Subject Classifications

AMS(MOS): 65N20 CR: G1.8 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bank, R.E., Douglas, C.C.: Sharp estimates for multigrid rates of convergence with general smoothing and acceleration. SIAM J. Numer. Anal.22, 617–633 (1985)Google Scholar
  2. 2.
    Bank, R.E., Rose, D.J.: Analysis of a multilevel iterative method for nonlinear finite element equations. Math. Comput.39, 453–465 (1982)Google Scholar
  3. 3.
    Hackbusch, W.: Multigrid methods and applications. Berlin Heidelberg New York Tokyo: Springer 1985Google Scholar
  4. 4.
    Hackbusch, W., Trottenberg, U. (eds.): Multigrid methods. Proceedings, Köln-Porz, 1981. Lect. Notes Math., Vol. 960. Berlin Heidelberg New York: Springer 1982Google Scholar
  5. 5.
    Jeggle, H.: Nichtlineare Funktionalanalysis. Stuttgart: Teubner 1979Google Scholar
  6. 6.
    Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. New York London: Academic Press 1970Google Scholar
  7. 7.
    Reusken, A.: Convergence of the Multigrid Full Approximation Scheme for a class of elliptic mildly nonlinear boundary value problems. Numerische Mathematik52, 251–277 (1988)Google Scholar
  8. 8.
    Reusken, A.: Convergence of the Multilevel Full Approximation Scheme including the V-cycle. Numer. Math.53, 663–686 (1988)Google Scholar
  9. 9.
    Hackbusch, W., Reusken, A.: On global multigrid convergence for nonlinear problems. Hackbusch, W. (ed.). In: Robust multigrid methods. Notes on Numerical Fluid Dynamics, pp. 105–113, Vieweg, Braunschweig 1988Google Scholar
  10. 10.
    Braess, D.: A multigrid method for the membrane problem. Comput. Mech.3, 321–329 (1988)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • W. Hackbusch
    • 1
  • A. Reusken
    • 2
  1. 1.Institut für Informatik und Praktische MathematikChristian-Albrechts-UniversitätKielFederal Republic of Germany
  2. 2.Mathematical InstituteUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations