Advertisement

Inventiones mathematicae

, Volume 50, Issue 1, pp 91–102 | Cite as

On the behavior ofp-adicL-efunctions ats=0

  • Bruce Ferrero
  • Ralph Greenberg
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barsky: Fonctions Zetap-adiques d'une Classe de Rayon des Corps de Nombres Totalement-reels. PreprintGoogle Scholar
  2. 2.
    Brumer, A.: On the Units of Alebraic Number Fields. Mathematika14, 121–124 (1967)Google Scholar
  3. 3.
    Cassou-Nogues, P.: Valeurs sur les Entiers des Fonctions Zeta des Corps de Nombres et des FonctionsL des Courbes Elliptiques. Thesis, Universite de Bordeaux (1978)Google Scholar
  4. 4.
    Coates, J., Lichtenbaum, S.: Onl-adic Zeta Functions. Ann. of Math.98, 498–550 (1973)Google Scholar
  5. 5.
    Deligne, P., Ribet, K.: Values of AbelianL-functions at Negative Integers. In press (1978)Google Scholar
  6. 6.
    Diamond, J.: On the Values ofp-adicL-functions at Positive Integers. In press (1978)Google Scholar
  7. 7.
    Ferrero, B., Washington, L.: The Iwasawa Invariantμ p Vanishes for Abelian Number Fields. Ann. of Math. In. press (1978)Google Scholar
  8. 8.
    Gross, B., Koblitz, N.: Gauss Sums and thep-adic Λ-function. In press (1978)Google Scholar
  9. 9.
    Greenberg, R.: On a Certainl-adic Representation. Inventiones Math.21, 117–124 (1973)Google Scholar
  10. 10.
    Greenberg, R.: Onp-adicL-functions and Cyclotomic Fields. Nagoya Math. Jour.56, 61–77 (1974)Google Scholar
  11. 11.
    Greenberg, R.: Onp-adicL-functions and Cyclotomic Fields II. Nagoya Math. Jour.67, 139–158 (1977)Google Scholar
  12. 12.
    Iwasawa, K.: Lectures onp-adicL-functions. Ann. Math. Studies74, Princeton University Press 1972Google Scholar
  13. 13.
    Iwasawa, K.: On Zl-extensions of Algebraic Number Fields. Ann. of Math.98, 246–326 (1973)Google Scholar
  14. 14.
    Kubota, T., Leopoldt, H.: Einep-adische Theorie der Zetawerte (Teil I). J. Reine Angew. Math.213, 328–339 (1964)Google Scholar
  15. 15.
    Morita, Y.: Ap-adic Analogue of the Λ-function. J. Fac. Science Univ Tokyo 22, 255–266 (1975)Google Scholar
  16. 16.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th Edition. Cambridge University Press London 1927Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Bruce Ferrero
    • 1
  • Ralph Greenberg
    • 2
  1. 1.FarmingtonUSA
  2. 2.Department of MathematicsUniversity of WashingtonSeattleUSA

Personalised recommendations