Advertisement

Inventiones mathematicae

, Volume 50, Issue 1, pp 35–64 | Cite as

On values of zeta functions and ℓ-adic Euler characteristics

  • Pilar Bayer
  • Jürgen Neukirch
Article

Keywords

Zeta Function Euler Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Bourbaki, N.: Algèbre Commutative, Ch. VII. Paris: Hermann, 1965Google Scholar
  2. 2.
    Cartan, H., Eilenberg, S.: Homological Algebra. Princeton Math. Series19. Princeton Univ. Press 1956Google Scholar
  3. 3.
    Coates, J.:p-adicL-functions and Iwasawa's Theory. In: Algebraic number fields:L-functions and Galois properties. Proc. Sympos., Univ. Durham, Durham, 1975, pp. 269–353. London-New York-San Francisco: Academic Press 1977Google Scholar
  4. 4.
    Coates, J., Lichtenbaum, S.: On ℓ-adic zeta functions. Ann. of Math.98, 498–550 (1973)Google Scholar
  5. 5.
    Iwasawa, K.: Onp-adicL-functions. Ann. of Math.89, 198–205 (1969)Google Scholar
  6. 6.
    Iwasawa, K.: On the μ-invariants of ℤ-extensions. In: Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y, Akizuki, pp. 1–11, Kinokuniya, Tokyo 1973Google Scholar
  7. 7.
    Iwasawa, K.: On ℤ-extensions of algebraic number fields. Ann. of Math.98, 246–326 (1973)Google Scholar
  8. 8.
    Kubota, T., Leopoldt, H.W.: Einep-adische Theorie der Zetawerte. J. Reine Angew. Math.214/215, 328–339 (1964)Google Scholar
  9. 9.
    Lichtenbaum, S.: On the values of zeta andL-functions I. Ann. of Math.96, 338–360 (1972)Google Scholar
  10. 10.
    Mazur, B.: Notes on étale cohomology of number fields. Ann. Sci. École Norm. Sup. 4e série6, 521–556 (1973)Google Scholar
  11. 11.
    Neukirch, J.: On ℓ-adische Kohomologie. (Unpublished lecture notes)Google Scholar
  12. 12.
    Serre, J.P.: Cohomologie galoisienne. Lect. Notes in Math.5 Berlin-Heidelberg-New York: Springer 1965Google Scholar
  13. 13.
    Serre, J.P.: Formes modulaires et fonctions zêtap-adiques, in Modular Functions of One Variable III. Lect. Notes in Math.350. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  14. 14.
    SGA 4: Théorie des topos et cohomologie étale des schémas. Tome 3. Lect. Notes in Math.305. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  15. 15.
    SGA 5: Cohomologie ℓ-adique et fonctions L. Lect. Notes in Math.589. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  16. 16.
    Siegel, C.L.: Über die analytische Theorie der quadratischen Formen III. Ann. of Math.38, 212–291 (1937) (Gesam. Abh. I, pp. 469–548)Google Scholar
  17. 17.
    Tamme, G.: Einführung in die étale Kohomologie. Math. Inst. der Univ. Göttingen 1976Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Pilar Bayer
    • 1
  • Jürgen Neukirch
    • 1
  1. 1.Fachbereich MathematikUniversität RegensburgRegensburgGermany

Personalised recommendations