Inventiones mathematicae

, Volume 50, Issue 1, pp 35–64 | Cite as

On values of zeta functions and ℓ-adic Euler characteristics

  • Pilar Bayer
  • Jürgen Neukirch
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Bourbaki, N.: Algèbre Commutative, Ch. VII. Paris: Hermann, 1965Google Scholar
  2. 2.
    Cartan, H., Eilenberg, S.: Homological Algebra. Princeton Math. Series19. Princeton Univ. Press 1956Google Scholar
  3. 3.
    Coates, J.:p-adicL-functions and Iwasawa's Theory. In: Algebraic number fields:L-functions and Galois properties. Proc. Sympos., Univ. Durham, Durham, 1975, pp. 269–353. London-New York-San Francisco: Academic Press 1977Google Scholar
  4. 4.
    Coates, J., Lichtenbaum, S.: On ℓ-adic zeta functions. Ann. of Math.98, 498–550 (1973)Google Scholar
  5. 5.
    Iwasawa, K.: Onp-adicL-functions. Ann. of Math.89, 198–205 (1969)Google Scholar
  6. 6.
    Iwasawa, K.: On the μ-invariants of ℤ-extensions. In: Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y, Akizuki, pp. 1–11, Kinokuniya, Tokyo 1973Google Scholar
  7. 7.
    Iwasawa, K.: On ℤ-extensions of algebraic number fields. Ann. of Math.98, 246–326 (1973)Google Scholar
  8. 8.
    Kubota, T., Leopoldt, H.W.: Einep-adische Theorie der Zetawerte. J. Reine Angew. Math.214/215, 328–339 (1964)Google Scholar
  9. 9.
    Lichtenbaum, S.: On the values of zeta andL-functions I. Ann. of Math.96, 338–360 (1972)Google Scholar
  10. 10.
    Mazur, B.: Notes on étale cohomology of number fields. Ann. Sci. École Norm. Sup. 4e série6, 521–556 (1973)Google Scholar
  11. 11.
    Neukirch, J.: On ℓ-adische Kohomologie. (Unpublished lecture notes)Google Scholar
  12. 12.
    Serre, J.P.: Cohomologie galoisienne. Lect. Notes in Math.5 Berlin-Heidelberg-New York: Springer 1965Google Scholar
  13. 13.
    Serre, J.P.: Formes modulaires et fonctions zêtap-adiques, in Modular Functions of One Variable III. Lect. Notes in Math.350. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  14. 14.
    SGA 4: Théorie des topos et cohomologie étale des schémas. Tome 3. Lect. Notes in Math.305. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  15. 15.
    SGA 5: Cohomologie ℓ-adique et fonctions L. Lect. Notes in Math.589. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  16. 16.
    Siegel, C.L.: Über die analytische Theorie der quadratischen Formen III. Ann. of Math.38, 212–291 (1937) (Gesam. Abh. I, pp. 469–548)Google Scholar
  17. 17.
    Tamme, G.: Einführung in die étale Kohomologie. Math. Inst. der Univ. Göttingen 1976Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Pilar Bayer
    • 1
  • Jürgen Neukirch
    • 1
  1. 1.Fachbereich MathematikUniversität RegensburgRegensburgGermany

Personalised recommendations