Advertisement

Acta Neurochirurgica

, Volume 64, Issue 1–2, pp 59–67 | Cite as

The conductance to outflow of CSF in adults with high-pressure hydrocephalus

  • F. Gjerris
  • S. E. Børgesen
  • E. Hoppe
  • F. Boesen
  • A. M. Nordenbo
Article

Summary

The intraventricular pressure was compared with conductance to outflow of CSF (Cout) in 12 patients with high-pressure hydrocephalus of less than 3 months duration. Cout was measured by a lumbo-ventricular or a ventriculo-ventricular perfusion test. In all patients Cout was very low (median 0.016 ml mm Hg−1 minute−1). Thus high-pressure hydrocephalus may be considered to be the consequence of a greatly increased resistance to resorption of CSF.

The level of the measured ICP (mean: ICP 23.5 mm Hg) corresponded to the theoretical level calculated from the measured Cout. B-waves were observed during most of the recording periods and episodes of plateau waves were seen in all patients but one. In this particular group of patients, the unsatisfactory results of ventriculo-atrial shunting emphasize the high risks associated conditions leading to high-pressure hydrocephalus.

Keywords

Cerebrospinal fluid dynamics conductance to CSF-outflow hydrocephalus intracranial pressure periventricular lucency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Børgesen, S. E., Gjerris, F., Sørensen, S. C., The resistance to cerebrospinal fluid absorption in humans. A method of evaluation by lumbo-ventricular perfusion, with particular reference to normal pressure hydrocephalus. Acta Neurol. Scand.57 (1978), 88–96.PubMedGoogle Scholar
  2. 2.
    Børgesen, S. E., Gyldensted, C., Gjerris, F.,et al., Computed tomography and pneumoencephalography compared to conductance to outflow of CSF in normal-pressure hydrocephalus. Neuroradiology20 (1980), 17–22.PubMedGoogle Scholar
  3. 3.
    Di Chiro, G., Arimitsu, T., Brooks, R. A.,et al., Computed tomography profiles of periventricular hypodensity in hydrocephalus and leucoencephalopathy. Radiology130 (1979), 661–666.PubMedGoogle Scholar
  4. 4.
    Ekstedt, J., CSF hydrodynamic studies in man: 2: Normal hydrodynamic variables related to CSF pressure and flow. J. Neurol. Neurosurg. Psychiatr.41 (1978), 345–353.PubMedGoogle Scholar
  5. 5.
    Fuhrmeister, U., Ruether, P., Dommasch, D.,et al., Alterations of CSF dynamics following meningitis and subarachnoid hemorrhage. In: Intracranial Pressure IV (Shulman, K.,et al., eds.), pp. 241–244. Berlin-Heidelberg-New York: Springer. 1980.Google Scholar
  6. 6.
    Gjerris, F., Børgesen, S. E., Sørensen, S. C., Predicting the results of ventricular shunting in normal pressure hydrocephalus by lumbo-ventricular perfusion test. In: Intracranial Pressure IV (Shulman, K.,et al., eds.), pp. 494–497. Berlin-Heidelberg-New York: Springer. 1980.Google Scholar
  7. 7.
    Hakim, S., Venegas, J. G., Burton, J. D., The physics of the cranial cavity, hydrocephalus and normal pressure hydrocephalus: Mechanical interpretation and mathematical model. Surg. Neurol.5 (1976), 187–210.PubMedGoogle Scholar
  8. 8.
    Hochwald, G. M., Lux, W. E., Sahar, A.,et al. Experimental hydrocephalus: Changes in cerebrospinal fluid dynamics as a function of tissue. Arch. Neurol.26 (1972), 120–129.PubMedGoogle Scholar
  9. 9.
    Katzman, R., Hussey, F., A simple constant infusion manometric test for measurement of CSF absorption. Neurology (Minneap.)20 (1970), 534–544.Google Scholar
  10. 10.
    Lundberg, N., Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr. Scand.36 (suppl. 149) (1960), 1–193.Google Scholar
  11. 11.
    Milhorat, T. H., Hydrocephalus and the cerebrospinal fluid, 380 pp. Baltimore: Williams and Wilkins. 1972.Google Scholar
  12. 12.
    Milhorat, T. H., The third circulation revisited. J. Neurosurg.42 (1975), 628–645.PubMedGoogle Scholar
  13. 13.
    Mori, K., Handa, H., Murata, T.,et al., Periventricular lucency in computed tomography of hydrocephalus and cerebral atrophy. J. Comput. Assist. Tomogr.4 (1980), 204–209.PubMedGoogle Scholar
  14. 14.
    Mosely, J. F., Radu, E. W., Factors influencing the development of periventricular lucencies in patients with raised intraventricular pressure. Neuroradiology17 (1979), 65–69.PubMedGoogle Scholar
  15. 15.
    Portnoy, H. D., Croissant, P. D., A practical method for measuring hydrodynamics of cerebrospinal fluid. Surg. Neurol.5 (1976), 273–277.PubMedGoogle Scholar
  16. 16.
    Sklar, F. H., Beyer, C. W., jr. Ramanathan, M.,et al. Servo-controlled lumbar infusions: A clinical tool for the determination of CSF dynamics as a function of pressure. Neurosurgery3 (1978), 170–175.PubMedGoogle Scholar
  17. 17.
    Voldby, B., Enevoldsen, E. M., Intraventricular pressure, CSF lactate and vasospasm in ruptured intracranial aneurysm. In: Intracranial Pressure IV (Shulman, K.,et al., eds.), pp. 211–214. Berlin-Heidelberg-New York: Springer. 1980.Google Scholar
  18. 18.
    Weller, R. O., Wisniewski, H., Shulman, K.,et al., Experimental hydrocephalus in young dogs: Histological and ultrastructural study of the brain tissue damage. J. Neuropathol. Exp. Neurol.30 (1971), 613–626.PubMedGoogle Scholar
  19. 19.
    Yaşargil, M. G., Yonekawa, Y., Zumstein, B.,et al., Hydrocephalus following spontaneous subarachnoid hemorrhage: Clinical features and treatment. J. Neurosurg.39 (1973), 474–479.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • F. Gjerris
    • 1
  • S. E. Børgesen
    • 1
  • E. Hoppe
    • 1
  • F. Boesen
    • 1
  • A. M. Nordenbo
    • 1
  1. 1.RigshospitaletUniversity Clinic of NeurosurgeryCopenhagenDenmark

Personalised recommendations