Advertisement

Inventiones mathematicae

, Volume 23, Issue 2, pp 105–116 | Cite as

The complement of the bifurcation variety of a simple singularity

  • Eduard Looijenga
Article

Keywords

Simple Singularity Bifurcation Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnol'd, V.I.: Normal forms of functions, the WeylgroupsA k,D k,E k and Lagrange singularities. Funkc. An. i ego Pril. (in Russian)6, 4, 3–25 (1972)Google Scholar
  2. 2.
    Brieskorn, E.: Sur les groupes de tresses. Sém. Bourbaki 401, nov. 1971Google Scholar
  3. 3.
    Brieskorn, E.: Die Monodromie der isolierten Singularitäten von Hyperflächen manuscripta math.2, 103–161 (1970)Google Scholar
  4. 4.
    Brieskorn, E., Saito, K.: Artin-Gruppen und Coxeter-Gruppen. Inventiones math.17, 245–271 (1972)Google Scholar
  5. 5.
    Deligne, P.: Les immeubles des groupes de tresses généralisés. Inventiones math.17, 273–302 (1972)Google Scholar
  6. 6.
    Fox, R. H., Neuwirth, L.: The braid groups. Math. Scand.10, 119–126 (1962)Google Scholar
  7. 7.
    Gromoll, D., Meyer, W.: On differentiable functions with isolated critical points. Topology8, 361–369 (1969)Google Scholar
  8. 8.
    Lê Dũng Tráng. To appear in Indag. Math.Google Scholar
  9. 9.
    Leray, J.: Le calcul différentiel et intégral sur une variété analytique. Bull. Soc. math. France87, 81–180 (1959)Google Scholar
  10. 10.
    Milnor, J.: Singular points of complex hypersurfaces. Ann. of Math. studies61, Princeton University Press (1968)Google Scholar
  11. 11.
    Narasimhan, R.: Introduction to the theory of analytic spaces. Lecture Notes in Mathematics25, Berlin-Heidelberg-New York: Springer 1966Google Scholar
  12. 12.
    Öre, Ö.: Theory of graphs. A. M. S. Colloquium Publications38, A. M. S., Prividence (1967)Google Scholar
  13. 13.
    Sebastiani, M., Thom, R.: Un résultat sur la monodromie. Inventiones math.13, 90–96 (1971)Google Scholar
  14. 14.
    Thom, R.: Modèles mathématiques de la morphogénèse, Ch. 3 IHES, Bures-sur-Yvette (1971)Google Scholar
  15. 15.
    Tits, J.: Le problème des mots dans les groupes de Coxeter. Instituto Nazionale di Alta Matematica, Symposia Mathematica1, 175–185 (1969)Google Scholar
  16. 16.
    Tjurina, G.N.: The topological properties of isolated singularities of complex spaces of codimension one. Isv. Akad. Nauk SSSR ser. mat. (in Russian)32, 605–620 (1968)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Eduard Looijenga
    • 1
    • 2
  1. 1.IHESBures-sur-YvetteFrance
  2. 2.Mathematisch InstituutUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations