Inventiones mathematicae

, Volume 88, Issue 1, pp 39–63

On the approximation property of excellent rings

  • Christel Rotthaus
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    André, M.: Homologie des algèbres commutatives. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  2. 2.
    Artin, M.: Algebraic approximation of structures over complete local rings. Publ. Math. Inst. Hautes Etud. Sci.36, 23–58 (1969)Google Scholar
  3. 3.
    Artin, M.: Algebraic structure of power series rings. Contemp. Math.13, 223–227 (1982)Google Scholar
  4. 4.
    Artin, M., Rotthaus, C.: A structure theorem for power series rings. (preprint)Google Scholar
  5. 5.
    Artin, M., Denef, J.: Smoothing for a ring homorphism along a section. Arithmetic and Geometry Vol. II, Birkhäuser, Boston 1983Google Scholar
  6. 6.
    Becker, J., Denef, J., Lipshitz, L., Dries, L. van den: Ultraproducts and approximation in local rings I. Invent. Math.51, 189–203 (1979)Google Scholar
  7. 7.
    Bourbaki, N.: Elements of mathematics: Commutative algebra. Paris: Hermann 1972Google Scholar
  8. 8.
    Denef, J., Lipshitz, L.: Ultraproducts and approximation in local rings II. Math. Ann.253, 1–28 (1980)Google Scholar
  9. 9.
    Elkik, R.: Solutions d'équations à coefficients dans aunneau hensélién. Ann. Sci. Éc. Norm. Supper. 43 sér.6, 553–604 (1973)Google Scholar
  10. 10.
    Grothendieck, A., Dieudonne, J.: Élements de géométrie algébrique. Publ. Math. Inst. Hautes Étud. Sci.20 (1964)Google Scholar
  11. 11.
    Grothendieck, A., Dieudonne, J.: Élements de géométre algebrique. Publ. Math. Inst. Hautes Étud. Sci.24 (1965)Google Scholar
  12. 12.
    Grothendieck, A., Dieudonne, J.: Élements de géométrie algebrique. Publ. Math. Inst. Hautes Étud. Sci.32 (1967)Google Scholar
  13. 13.
    Iversen, B.: Generic local structure of the morphisms in commutative algebra. Lec. Notes Math. Vol. 310. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  14. 14.
    Kurke, H., Mostowski, T., Pfister, G., Popescu, D., Roczen, M.: Die Approximationseigenschaft lokaler Ringe. Lec. Notes Math. Vol. 634. Berlin-Heidelberg-New York: Springer 1978Google Scholar
  15. 15.
    Lichtenbaum, S., Schlessinger, M.: The cotangent complex of a morphism. Trans. Am. Math. Soc.128, 41–70 (1967)Google Scholar
  16. 16.
    Matsumura, H.: Commutative algebra. Benjamin, New York, 1970Google Scholar
  17. 17.
    Pfister, G., Popescu, D.: Die strenge approximationseigenschaft lokaler Ringe. Invent. Math.30, 145–174 (1975)Google Scholar
  18. 18.
    Pfister, G., Popescu, D.: On three-dimensional local rings with approximation property. Rev. Roum. Math. Pures Appl.26, 301–307 (1981)Google Scholar
  19. 19.
    Ploski, A.: Note on a theorem by M. Artin. Bull. Acad. Pol. Sci., Ser. Math.22, 1107–1109 (1974)Google Scholar
  20. 20.
    Popescu, D.: General Néron Desingularization. Nagoya Math.100, 97–126 (1985)Google Scholar
  21. 21.
    Raynaud, M.: Anneaux locaux henseliens. Lect. Notes Math., Vol. 169. Berlin-Heidelberg-New York: Springer 1970Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Christel Rotthaus
    • 1
  1. 1.Department of MathematicsMichigan State UniversityEast LansingUSA

Personalised recommendations