Inventiones mathematicae

, Volume 91, Issue 1, pp 61–104 | Cite as

The equivariant topological s-cobordism theorem

  • Mark Steinberger
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A] Anderson, D.R.: Torsion invariants and actions of finite groups. Mich. Math. J.29, 27–42 (1982)Google Scholar
  2. [AH] Anderson, D.R., Hsiang, W.-C.: The functorsK −i and pseudo-isotopies of polyhedra. Ann. Math105, 201–223 (1977)Google Scholar
  3. [AK] Araki, S., Kawakubo, K.: Equivariants-cobordism theorems (Preprint)Google Scholar
  4. [Ba] Barden, D.: The Structure of Manifolds. Doctoral thesis. Cambridge University 1963Google Scholar
  5. [BHS] Bass, H., Heller, A., Swan, R.: The Whitehead group of a polynomial extension. Publ. Inst. hautes Etud. Sci.22 (1964)Google Scholar
  6. [Bo] Borsuk, K.: Sur l'élimination de phenomènes paradoxaux in topologie générale. Proc. Int. Congr. Math. vol. 1, pp. 197–208. Amsterdam, 1954Google Scholar
  7. [BH] Browder, W., Hsiang, W.-C.: Some problems on homotopy theory manifolds and transformation groups. Proc. Symp. Pure Math. vol. 32 part II, pp. 251–267, Am. Math. Soc., Providence, RI, 1978Google Scholar
  8. [BQ] Browder, W., Quinn, F.: A surgery theory forG-manifolds and stratified sets, Manifolds (Tokyo 1973). University Tokyo Press, Tokyo, 1975, pp. 27–36Google Scholar
  9. [Ca] Carter, D.: LowerK-theory of finite groups. Commun. Algebra8, 1927–1937 (1980)Google Scholar
  10. [C1] Chapman, T.A.: Cell-like mappings of Hilbert Cube manifolds: applications to simple homotopy theory. Bull. Am. Math. Soc.79, 1286–1291 (1973)Google Scholar
  11. [C2] Chapman, T.A.: Lectures on Hilbert Cube Manifolds. CBMS Regional Conf. Ser. in Math.28, Am. Math. Soc., Providence, RI, 1976Google Scholar
  12. [C3] Chapman, T.A.: Controlled Simple Homotopy Theory. (Lect. Notes Math. vol. 1009) Berlin Heidelberg New York: Springer 1983Google Scholar
  13. [C4] Chapman, T.A.: Controlled boundary and h-cobordism theorems. Trans. Am. Math. Soc.280, 73–95 (1983)Google Scholar
  14. [CF] Chapman, T.A., Ferry, S.: Approximating homotopy equivalences by homeomorphisms. Am. J. Math.101, 583–607 (1979)Google Scholar
  15. [Co] Cohen, M.M.: A Course in Simple Homotopy Theory. Berlin Heidelberg New York: Springer 173Google Scholar
  16. [DR1] Dovermann, K.H., Rothenberg, M.: An equivariant surgery sequence and equivariant diffeomorphism and homeomorphism classification (announcement). Topology Symposium Siegen 1979. (Lect. Notes Math. vol. 788, pp. 257–280) Berlin Heidelberg New York: Springer 1980Google Scholar
  17. [DR2] Dovermann, K.H., Rothenberg, M.: An equivariant surgery sequence and equivariant diffeomorphism and homeomorphism classification (Preprint)Google Scholar
  18. [F1] Ferry, S.: The homeomorphism group of a compact Hilbert cube manifold is an ANR. Ann. Math.106, 101–119 (1977)Google Scholar
  19. [F2] Ferry, S.: A Simple-homotopy approach to the finiteness obstruction, Shape Theory and Geometric Topology (Dubrovnik 1981). (Lect. Notes in Math. vol. 870, pp. 73–81) Berlin Heidelberg New York: Springer 1981Google Scholar
  20. [G] Giffen, C.: The generalized Smith Conjecture. Am. J. Math.88, 187–198 (1966)Google Scholar
  21. [H] Hauschild, H.: Äquivariante Whiteheadtorsion. Manuscr. Math.26, 63–82 (1978)Google Scholar
  22. [Il1] Illman, S.: Whitehead Torsion and group actions. Ann. Acad. Sci. Fenn. Ser. A.588, 1–44 (1974)Google Scholar
  23. [Il2] Illman, S.: Recognition of linear actions on spheres Trans. Am. Math. Soc.274, 445–478 (1982)Google Scholar
  24. [KS] Kahn, P.J., Steinberger, M.: Equivariant structure spaces (In preparation)Google Scholar
  25. [KSi] Kirby, R.C., Siebenmann, L.C.: Foundational Essays on Topological Manifolds, Smoothings and Triangulations. Ann. Math. Stud., vol. 88, Princeton University Press, Princeton, NJ, 1977Google Scholar
  26. [LR] Lashof, R., Rothenberg, M.:G-smoothing theory. Proc. Symp. Pure Math. vol. 32, part I AMS, Providence, RI, 1978, pp. 211–266Google Scholar
  27. [Ma] Mazur, B.: Differential topology from the point of view of simple homotopy theory. Publ. Inst. Hautes Etud. Sci.15, 5–93 (1963)Google Scholar
  28. [Mi] Milnor, J.: Two complexes that are homeomorphic but combinatorially distinct. Ann. Math.74, 575–590 (1961)Google Scholar
  29. [Q1] Quinn, F.: Ends of Maps I. Ann. Math.110, 275–331 (1979)Google Scholar
  30. [Q2] Quinn, F.: Ends of Maps II. Invent. Math.68, 353–424 (1982)Google Scholar
  31. [Q3] Quinn, F.: Weakly stratified sets (Preprint)Google Scholar
  32. [Ran] Ranicki, A.: Algebraic and geometric splittings of theK- andL-groups of polynomial extensions (Preprint)Google Scholar
  33. [R] Rothenberg, M.: Torsion invariants and Finite transformation groups. Proc. Symp. Pure Math. 32, part I, AMS, Providence, RI, 1978, pp. 276–311Google Scholar
  34. [Si1] Siebenmann, L.C.: Obstructions to Finding a Boundary for an Open Manifold, Doctoral thesis, Princeton University 1965Google Scholar
  35. [Si2] Siebenmann, L.C.: Infinite simple homotopy types. Indag. Math.32, 479–495 (1970)Google Scholar
  36. [Si3] Siebenmann, L.C.: Topological manifolds. Proc. Internat. Cong. Math., Nice, Sept. 1970, Gauthier-Villars, editeur, Paris 6e, 1971, vol. 2, pp. 133–163Google Scholar
  37. [Si4] Siebenmann, L.C.: Deformation of homeomorphisms on stratified sets. Comment. Math. Helv.47, 123–163 (1972)Google Scholar
  38. [SGH] Siebenmann, L.C., Guillou, L., Hähl, H.: Les voisanages ouverts réguliers: critères homotopiques d'existence. Ann. Sci. Ec. Norm. Su7, 431–461 (1974)Google Scholar
  39. [Sta] Stallings, J.: Notes on Polyhedral Topology. Tata Institute, 1968Google Scholar
  40. [SW1] Steinberger, M., West, J.: Equivariant h-cobordisms and finiteness obstructions. Bull. Am. Math. Soc.12, 217–220 (1985)Google Scholar
  41. [SW2] Steinberger, M., West, J.: Approximation by equivariant homeomorphisms (revised version) (To appear in Trans Am. Math. Soc.)Google Scholar
  42. [SW3] Steinberger, M., West, J.: Controlled finiteness is the obstruction to equivariant handle decomposition (Preprint)Google Scholar
  43. [SW4] Steinberger, M., West, J.: Equivariant controlled simple homotopy theory (In preparation)Google Scholar
  44. [SW5] Steinberger, M., West, J.: Equivariant Hilbert cube manifold theory (In preparation)Google Scholar
  45. [Webb] Webb, D.: Equivariantly finite manifolds with no handle structure (Preprint)Google Scholar
  46. [Wei] Weinberger, S.: Class numbers, the Novikov conjecture and transformation groups (Preprint)Google Scholar
  47. [W] West, J.: Mapping Hilbert cube manifolds to ANR's: a solution of a conjecture of Borsuk. Ann. Math.106, 1–18 (1977)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Mark Steinberger
    • 1
  1. 1.Department of Mathematics and StatisticsSUNY at AlbanyAlbanyUSA

Personalised recommendations