Journal of tissue culture methods

, Volume 14, Issue 2, pp 51–57 | Cite as

Cell culture for three-dimensional modeling in rotating-wall vessels: An application of simulated microgravity

  • Ray P. Schwarz
  • Thomas J. Goodwin
  • David A. Wolf
Contributed Papers

Summary

High-density, three-dimensional cell cultures are difficult to grow in vitro. The rotating-wall vessel (RWV) described here has cultured BHK-21 cells to a density of 1.1 × 107 cells/ml. Cells on microcarriers were observed to grow with enhanced bridging in this batch culture system. The RWV is a horizontally rotated tissue culture vessel with silicon membrane oxygenation. This design results in a low-turbulence, low-shear cell culture environment with abundant oxygenation. The RWV has the potential to culture a wide variety of normal and neoplastic cells.

Key words

three-dimensional cell culture microcarrier cell culture BHK cells high-density cell culture rotating-wall vessel bioreactor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Briegleb, W. The clinostat—a tool for analyzing the influence of acceleration on solid-liquid systems. Proceedings of workshop on space biology, Cologne, Germany (ESA SP-206) 97–101; March 1983.Google Scholar
  2. 2.
    Cherry, R. S.; Papoutsakis, E. T. Physical mechanisms of cell damage in microcarrier cell culture bioreactors. Biotechnol. Bioeng. 32(8):1001–1014; 1988.Google Scholar
  3. 3.
    Croughan, M. S.; Wang, D. I. C. Growth and death in overagitated microcarrier cell cultures. Biotechnol. Bioeng. 33(6):731–744; 1989.Google Scholar
  4. 4.
    Croughan, M. S.; Hamel, J.-F.; Wang, D. I. C. Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnol. Bioeng. 29(1):130–141; 1987.Google Scholar
  5. 5.
    Croughan, M. S.; Sayre, S. S.; Wang, D. I. C. Viscous reduction of turbulent damage in animal cell culture. Biotechnol. Bioeng. 33(7):862–872; 1989.Google Scholar
  6. 6.
    Dedolph, R. R.; Dipert, M. H. The physical basis of gravity nullification by clinostatic rotation. Plant Physiol. 47(6):756–764; 1971.Google Scholar
  7. 7.
    Feder, J.; Tolbert, W. R. The large-scale cultivation of mammalian cells. Sci. Am. 248:36–43; 1983.PubMedGoogle Scholar
  8. 8.
    Fleischaker, R. J.; Sinsky, A. J. Oxygen demand and supply in cell culture. Eur. J. Appl. Microbiol. Biotechnol. 12:193–197; 1981.Google Scholar
  9. 9.
    Glacken, M. W.; Fleishaker, R. J.; Sinsky, A. J. Reduction of waste product excretion via nutrient control; Possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells. Biotechnol. Bioeng. 28(9):1376–1389; 1986.Google Scholar
  10. 10.
    Glacken, M. W.; Fleishaker, R. J.; Sinsky, A. J. Mammalian cell culture: engineering principles and scale-up. Trends Biotechnol. 1(4):102–108; 1983.Google Scholar
  11. 11.
    Gmuender, F. K.; Cogoli, A. Cultivation of single cells in space. Appl. Microgravity Technol. 1:115–122; 1988.Google Scholar
  12. 12.
    Goodwin, T. J.; Jessup, J. M.; Sams, C., et al. In vitro three-dimensional tissue modeling. J.S.C. Technology Annual Report. NASA Technical Memorandum 100473; 1988.Google Scholar
  13. 13.
    Goodwin, T. J.; Jessup, J. M.; Wolf, D. A. Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels. In Vitro Cell. Dev. Biol. 28A:47–60; 1992.PubMedGoogle Scholar
  14. 14.
    Microcarrier cell culture: principles and methods. Uppsala, Sweden: Pharmacia Fine Chemicals; 1981.Google Scholar
  15. 15.
    Nilsson, K.; Buzsaky, F.; Mosbach, K. Growth of anchorage-dependent cells on macropourous microcarriers. Bio-Technology 4(11):989–990; 1986.Google Scholar
  16. 16.
    Schwarz, R. P.; Wolf, D. A.; Trinh, T. Rotating cell culture vessel. U.S. Patent Application Serial No. 07/213,558; 1991.Google Scholar
  17. 17.
    Taylor, G. R. Cell biology experiments conducted in space. Bioscience 27(2):102–108; 1977.Google Scholar
  18. 18.
    Thalmann, E. Biological experiences in bubble-free aeration system. Acta. Biotechnol. 9(6):511–516; 1989.Google Scholar
  19. 19.
    Tschopp, A.; Cogoli, A.; Lewis, M. L., et al. Bioprocessing in space: human cells attach to beads in microgravity. J. Biotechnol. 1(5–6):287–294; 1984.PubMedGoogle Scholar
  20. 20.
    van Wezel, A. L. Microcarrier/cultures of animal cells. In: Kruse, P. F.; Paterson, M. K., eds. Tissue culture: methods and applications. New York: Academic Press; 1973:372–377.Google Scholar
  21. 21.
    Vaseen, V. A. U.S. Patent No. 4,223,094; 1980.Google Scholar
  22. 22.
    Shibayama, D., et al. U.S. Patent No. 3,676,074; 1972.Google Scholar
  23. 23.
    Wolf, D. A.; Schwarz, R. P.; Trinh, T. Controlled turbulence bioreactors. NASA Tech. Briefs, October 1989:74.Google Scholar

Copyright information

© Tissue Culture Association 1992

Authors and Affiliations

  • Ray P. Schwarz
    • 1
  • Thomas J. Goodwin
    • 1
  • David A. Wolf
    • 2
  1. 1.KRUG Life SciencesHouston
  2. 2.NASA, Johnson Space CenterHouston

Personalised recommendations