Inventiones mathematicae

, Volume 89, Issue 1, pp 37–118 | Cite as

Eisenstein cohomology of arithmetic groups. The case GL2

  • G. Harder
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bo 1] Borel, A.: Stable real cohomology of arithmetic groups. Ann. Sci. Ec. Norm. Super. (4)7: 235–272 (1974)Google Scholar
  2. [Bo 2] Borel, A.: Stable real cohomology of arithmetic groups II. Prog. Math. Boston14: 21–55 (1981)Google Scholar
  3. [Bo 3] Borel, A.: Cohomologie de sous-groupes discrets et représentations de groupes semi-simples. Astérisque32–33: 73–112 (1976)Google Scholar
  4. [B-S] Borel, A., Serre, J-P.: Corners and arithmetic groups Comment. Math. Helv.48: 436–491 (1973)Google Scholar
  5. [B-W] Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups, and representations of reductive groups. Ann. Math. Stud., Princeton University Press, 1980Google Scholar
  6. [Ch] Chevalley, C.: Deux théorèmes d'arithmétique. J. Math. Soc. Japan, c, 1951, pp. 33–44Google Scholar
  7. [D] Deligne, P.: Valeurs de fonctionsL et périodes d'intégrales. Proc. Symp. Pure Math.33 (part. 2): 313–346 (1979)Google Scholar
  8. [DB] Don Blasius: On the critical values of HeckeL-series. Ann. Math.124:23–63 (1986)Google Scholar
  9. [Do] Delorme, P.: Letter to A. BorelGoogle Scholar
  10. [Du] Duflo, M.: Représentations irréducibles des groupes semi-simples complexes. Analyse Harmonique sur les groupes de Lie, Séminaire Nancy-Straßbourg 1973–75, LN 497, 1975, pp. 26–88Google Scholar
  11. [En] Enright, T.: Relative Lie algebra cohomology and unitary representations of complex Lie groups. Duke Math. J.46: 513–525 (1979)Google Scholar
  12. [Fl] Flath, D.: Decomposition of representations into tensor products. Proc. Symp. Pure Math.33: I, 179–183 (1979)Google Scholar
  13. [G-J] Gelbart, S., Jacquet, H.: Forms of GL(2) from the analytic point of view. Proc. Symp. Pure Math.33 (I): 213–251 (1979)Google Scholar
  14. [Go] Godement, R.: Notes on Jacquet-Langlands' Theory. The Institute for Advanced Study, 1970Google Scholar
  15. [Gr] Grothendieck, A.: Sur quelques points d'algèbre homologique. Tohoku Math. J.9: 119–221 (1957)Google Scholar
  16. [Ha 1] Harder, G.: Cohomology of SL2(0), Lie groups and their representations. In: Gelfand, I.M. (ed.). Proc. of the Summer School on Group Repres. London: A. Hilger, 1975, pp. 139–150Google Scholar
  17. [Ha 2] Harder, G.: On the cohomology of discrete arithmetically defined groups. Proc. of the Int. Colloquium on Discrete Subgroups and Applications to Moduli, Bombay, 1973; Oxford University Press, 1975, pp. 129–160Google Scholar
  18. [Ha 3] Harder, G.: Period Integrals of Cohomology Classes which are Represented by Eisenstein Series. Proc. Bombay Colloquium 1979, Berlin Heidelberg New York: Springer 1981, pp. 41–115Google Scholar
  19. [Ha 4] Harder, G.: Period integrals of Eisenstein cohomology classes and special values of someL-functions, Number theory related to Fermat's last theorem. In: Koblitz, Neal (ed.) Progr. Math.26, pp. 103–142 (1982)Google Scholar
  20. [Ha 5] Harder, G.: General aspects in the theory of modular symbols. In: Bertin, M.-J. (ed.) Séminaire de Théorie des Nombres, Paris 1981–82. Progr. Math. vol.38: 73–88 (1983)Google Scholar
  21. [H-S] Harder, G., Schappacher, N.: Special values of HeckeL-functions and abelian integrals. Lect. Notes Math., Berlin Heidelberg New York: Springer 1111, 1985, pp. 17–49Google Scholar
  22. [HC] Harish-Chandra: Automorphic forms on semisimple Lie groups. Lect. Notes Math., Berlin Heidelberg New York: Springer, 62, 1968Google Scholar
  23. [J-L] Jacquet, H., Langlands, R.: Automorphic forms on GL(2). Lect. Notes Math.114 (1970)Google Scholar
  24. [Kn] Kneser, M.: Schwache Approximation in algebraischen Gruppen. Colloque sur la théorie des groupes algébriques, CBRM, Bruxelles, 1962Google Scholar
  25. [Ko] Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. Math.74: 329–387 (1961)Google Scholar
  26. [Lg] Lang, S.: Algebraic Number Theory. Reading, MA, Addison Wesley Publ. Company, 1970Google Scholar
  27. [La] Langlands, R.: On the functional equation satisfied by Eisenstein series. Lect. Notes Math. Berlin Heidelberg New York: Springer, 544, 1976Google Scholar
  28. [M-M] Matsushima, Y., Murakami, S.: On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds. Ann. Math.78: 365–416 (1963)Google Scholar
  29. [Se 1] Serre, J.-P.: Abelianl-adic representations and elliptic curves. New York Amsterdam: Benjamin 1968Google Scholar
  30. [Se 2] Serre, J.-P.: Le problème des groupes de congruence pour SL2. Ann. Math.92: 489–527 (1970)Google Scholar
  31. [Sie] Siegel, C.L.: Über die Fourierschen Koeffizienten von Modulformen. Gött. Nachr.3: 15–56 (1970) (=Ges. Abh., IV, 18–139)Google Scholar
  32. [Schw] Schwermer, J.: Konomologie arithmetisch definierter Gruppen und Eisensteinreihen. Lect. Notes Math., Berlin Heidelberg New York: Springer, 988, 1983Google Scholar
  33. [Sp] Speh, B.: Unitary representations of GL(n,R) with non-trivial (g, K)-cohomology. Invent. Math.71: 433–465 (1983)Google Scholar
  34. [vE] van Est: A generalization of the Cartan-Leray spectral sequence II. Indagationes Math.20: (series A) 406–413 (1958)Google Scholar
  35. [Vo 1] Vogan, D.: Representations of real reductive Lie groups. Prog. Math., Boston15 (1981)Google Scholar
  36. [Vo 2] Vogan, D.: Unitarizability of certain series of representations. Ann. Math.120: 141–187 (1984)Google Scholar
  37. [V-Z] Vogan, D., Zuckerman, G.: Unitary representations with non-zero cohomology. Compos. Math.53: 51–90 (1984)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • G. Harder
    • 1
  1. 1.Mathematisches InstitutUniversität BonnBonnFederal Republic of Germany

Personalised recommendations