Inventiones mathematicae

, Volume 89, Issue 1, pp 13–36 | Cite as

Examples of symplectic structures

  • Dusa McDuff
Article

Summary

In this paper we construct symplectic forms\(\tilde \omega _k , k \geqq 0\), on a compact manifold\({\tilde Y}\) which have the same homotopy theoretic invariants, but which are not diffeomorphic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ar] Aronszajn, N.: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of the second order. J. Math. Pures Appl. (9),36, 235–249 (1957)Google Scholar
  2. [AS] Atiyah, M.F., Singer, I.M.: Index of elliptic operators III. Ann. Math.87, 546–604 (1968)Google Scholar
  3. [B] Banyaga, A.: Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique. Comment. Math. Helv.53, 174–227 (1978)Google Scholar
  4. [BJS] Bers, L., John, F., Schechter, M.: Partial differential equations. AMS Lectures in Appl. Math., vol. 3A, Am. Math. Soc., Providence, 1964Google Scholar
  5. [BKW] Boothby, W.M., Kobayashi, S., Wang, H.C.: A note on mappings and automorphisms of almost complex manifolds. Ann. Math.77, 329–334 (1963)Google Scholar
  6. [FU] Freed, M., Uhlenbeck, K.: Instantons and 4-manifolds, MSRI publications. Berlin-Heidelberg-New York: Springer, (1984)Google Scholar
  7. [G1] Gromov, M.: Pseudo-holomorphic curves on almost complex manifolds. Invent. math.82, 307–347 (1985)Google Scholar
  8. [G2] Gromov, M.: Partial differential relations. Ergebnisse der Math., 3. Folge, Band 9, Berlin-Heidelberg-New York: Springer, 1986Google Scholar
  9. [McD 1] McDuff, D.: Applications of convex integration to symplectic and contact geometry. Ann. Inst. Fourier (in press) (1986/7)Google Scholar
  10. [McD 2] McDuff, D.: Examples of simply-connected symplectic non-Kählerian manifolds. J. Differ. Geom.20, 267–277 (1984)Google Scholar
  11. [Mo] Moser, J.: On the volume element on manifolds. Trans. Am. Math. Soc.120, 280–296 (1965)Google Scholar
  12. [MK] Morrow, J., Kodaira, K.: Complex manifolds. Holt, Rinehart, Winston, New York 1971Google Scholar
  13. [NW] Nijenhuis, A., Woolf, W.: Some integration problems in almost-complex and complex manifolds. Ann. Math.77, 424–489 (1963)Google Scholar
  14. [P] Pansu, P.: Pseudoholomorphic curves in symplectic manifolds. Preprint, Ecole Polytechnique at Palaiseau, 1986Google Scholar
  15. [Sm] Smale, S.: An infinite dimensional version of Sard's theorem. Am. J. Math.87, 861–866 (1965)Google Scholar
  16. [W] Weinstein, A.: Symplectic manifolds and their Lagrangian submanifolds. Adv. Math.6, 329–346 (1971)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Dusa McDuff
    • 1
  1. 1.Department of MathematicsSUNYStony BrookUSA

Personalised recommendations