Inventiones mathematicae

, Volume 8, Issue 2, pp 83–97 | Cite as

On isometries of inner product spaces

  • John Milnor


Product Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artin, E., and J. Tate: Class field theory. New York: Benjamin 1967.Google Scholar
  2. 2.
    Cartan, H., and S. Eilenberg: Homological algebra. Princeton Univ. Press 1956.Google Scholar
  3. 3.
    Cikunov, I. K.: The structure of isometric transformations of a symplectic or orthogonal vector space. Dokl. Akad. Nauk SSSR165, 500–501 (1965), or Soviet Math. Dokl.6, 1479–1481 (1965).Google Scholar
  4. 4.
    —: Structure of isometric transformations of a symplectic or orthogonal vector space [Russian]. Ukrain. Mat. Ž.18, No. 4, 79–93 (1966).Google Scholar
  5. 5.
    Cikunov, I. K.: A class of isometric transformations of a symplectic or orthogonal vector space [Russian]. Ukrain. Mat. Ž., No. 5, 122–127 (1966).Google Scholar
  6. 6.
    Cikunov, I. K.: On the structure of isometric transformations of symplectic and orthogonal vector spaces over a finite fieldsGF (q) [Russian, English summary], Algebra and Math. Logic: Studies in Algebra [Russian], 72–97, Izdat. Kiev Univ. 1966.Google Scholar
  7. 7.
    Jacobson, N.: A note on hermitian forms. Bull. Amer. Math. Soc.46, 264–268 (1940).Google Scholar
  8. 8.
    Landherr, W.: Äquivalenz Hermitescher Formen über einem beliebigen algebraischen Zahlkörper. Abh. Math. Sem. Hamburg Univ.11, 245–248 (1935).Google Scholar
  9. 9.
    Lang, S.: Algebra. Reading, Mass.: Addison-Wesley 1965.Google Scholar
  10. 10.
    Levine, J.: Knot cobordism groups in codimension two. Comment. Math. Helv.44, 229–244 (1969).Google Scholar
  11. 11.
    —: Invariants of knot cobordism. Inventiones. math.8, 98–110 (1969).Google Scholar
  12. 12.
    Milnor, J.: Infinite cyclic coverings, pp. 115–133 of Conference on The Topology of Manifolds, ed. J.G. Hocking, Boston: Prindle, Weber and Schmidt 1968.Google Scholar
  13. 13.
    O'Meara, O.T.: Introduction to quadratic forms. Berlin-Göttingen-Heidelberg: Springer 1963.Google Scholar
  14. 14.
    van der Waerden, B.L.: Modern algebra I. New York: Ungar 1949.Google Scholar
  15. 15.
    Wall, G. E.: On the conjugacy classes in the unitary, symplectic and orthogonal groups. Journ. Australian Math. Soc.3, 1–62 (1963).Google Scholar
  16. 16.
    Williamson, J.: Normal matrices over an arbitrary field of characteristic zero. Amer. J. Math.61, 335–356 (1939).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • John Milnor
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations