Inventiones mathematicae

, Volume 9, Issue 2, pp 145–164 | Cite as

Affine duality and cofiniteness

  • Robin Hartshorne
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bourbaki, N.: Algèbre Commutative, ch. III and IV. Paris: Hermann 1961.Google Scholar
  2. 2.
    Grothendieck, A., Dieudonné, J.: Eléments de Géométrie Algébrique (EGA), Vol. 4, 8, 11. Publications Mathématiques de l'Institut des Hautes Etudes Scientifiques Paris.Google Scholar
  3. 3.
    —: Cohomologie Locale des Faisceaux Cohérents et Théorèmes de Lefschetz locaux et globaux (SGA 2). Amsterdam: North Holland Pub. Co. 1969.Google Scholar
  4. 4.
    —: Local Cohomology (LC), lecture notes by R. Hartshorne. Lecture Notes in Mathematics41, Berlin-Göttingen-Heidelberg: Springer 1967.Google Scholar
  5. 5.
    Hartshorne, R.: Residues and Duality (RD). Lecture Notes in Mathematics20. Berlin-Göttingen-Heidelberg: Springer 1966.Google Scholar
  6. 6.
    —: Cohomological dimension of algebraic varieties. Annals of Math.88, 403–450 (1968).Google Scholar
  7. 7.
    Jouanolou, J. P.: Systémes Projectifs J-adiques, (exposé V of SGA 5) mimeo notes, Institut des Hautes Etudes Scientifiques. Paris (to appear).Google Scholar
  8. 8.
    Matlis, E.: Injective modules over noetherian rings. Pac. J. Math.8, 511–528 (1958).Google Scholar
  9. 9.
    Zariski, O., Samuel, P.: Commutative algebra, vol. II. Princeton, N.J.: Van Nostrand 1960.Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • Robin Hartshorne
    • 1
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations