Inventiones mathematicae

, Volume 2, Issue 2, pp 134–144 | Cite as

Endomorphisms of abelian varieties over finite fields

  • John Tate
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bourbaki, N.: Algèbre, Ch. 8, § 4, No. 2.Google Scholar
  2. [2]
    Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Hamburg14, 197–272 (1941).Google Scholar
  3. [3]
    Lang, S.: Abelian varieties. New York: Interscience 1959.Google Scholar
  4. [4]
    Manin, Y.: The theory of commutative formal groups over fields of finite characteristic. Russian math. surveys18, No. 6, 1–81 (1963)Google Scholar
  5. [5]
    Mumford, D.: Geometric invariant theory. Ergebn. der Math., Bd. 34. Berlin-Heidelberg-New York: Springer 1965.Google Scholar
  6. [6]
    —: On the equations defining abelian varieties. I. Inventiones math.1, 287–354 (1966).Google Scholar
  7. [7]
    Serre, J.-P.: Groupes de Liel-adiques attachés aux courbes elliptiques. Colloque Internat. du C.N.R.S. No. 143 a Clermont-Ferrand, Éditions du C.N.R.S., Paris 1966.Google Scholar
  8. [8]
    Serre, J.-P.: Courbes elliptiques et groupes formels, l'Annuaire du Collége de France, 1965/66.Google Scholar
  9. [9]
    Shafaryevitch, I.R.: Algebraic Numer Fields. Proceedings of the Internat. Congr. of Math. in Stockholm, 1962, p. 163–176. (A.M.S. Translations, Ser. 2, vol. 31, p. 25–39.)Google Scholar
  10. [10]
    Tate, J.: Algebraic cycles and poles of zeta functions. Arithmetical algebraic geometry, p. 93–110. New York: Harper & Row 1965.Google Scholar
  11. [11]
    Tate, J.: On the conjecture of Birch and Swinnerton-Dyer and a geometric analog. Seminaire Bourbaki, 1965/66, exposé 306.Google Scholar
  12. [12]
    Weil, A.: Variétés abéliennes et courbes algébriques. Act. No. 1064. Paris: Hermann 1948.Google Scholar

Copyright information

© Springer-Verlag 1966

Authors and Affiliations

  • John Tate
    • 1
  1. 1.Institut des Hautes Études ScientifiquesHarvard UniversityCambridgeUSA

Personalised recommendations