Inventiones mathematicae

, Volume 92, Issue 2, pp 409–430

Minimal generation of basic open semianalytic sets

  • C. Andradas
  • L. Bröcker
  • J. M. Ruiz
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Be] Becker, E.: Hereditarily pythagorean fields and orderings of higher level. IMPA Lecture Notes29, 1978Google Scholar
  2. [Be-A] Becker, E., Andradas, C.: On the real stability index of rings and its application to semialgebraic geometry. Sem. Logique et Algèbre Réelle Paris VII, 1984/85Google Scholar
  3. [Be-Brö] Becker, E., Bröcker, L.: On the description of the reduced With ring. J. Algebra52, 328–346 (1978)Google Scholar
  4. [Be-Kö] Becker, E., Köpping, E.: Reduzierte quadratische Formen und Semiordnungen reeller Körper. Abh. Math. Semin. Univ. Hamb.46, 143–177 (1977)Google Scholar
  5. [B-C-R] Bochnak, J., Coste, M., Roy, M.F.: Géométrie Algébrique Réelle. Ergeb. Math., Berlin Heidelberg New York: Springer 1987Google Scholar
  6. [Brö1] Bröcker, L.: Zur Theorie der quadratischen Formen über formal reellen Körpern, Math. Ann.210, 233–256 (1974)Google Scholar
  7. [Brö2] Bröcker, L.: Über die Anzahl der Anordnungen eines kommutativen Körpers. Arch. Math.29, 458–464 (1977)Google Scholar
  8. [Brö3] Bröcker, L.: Minimale Erzeugung von Positivbereichen. Geom. Dedicata16, 335–350 (1984)Google Scholar
  9. [Brö4] Bröcker, L.: Spaces of orderings and semialgebraic sets. Can. Math. Soc., Conf. Proc.4, 231–248 (1984)Google Scholar
  10. [C] Cartan, H.: Variétés analytiques réelles et variétés analytiques complexes. Bull. Soc. Math. Fr.85, 77–99 (1957)Google Scholar
  11. [F] Frisch, J.: Points de platitude d'un morphisme d'espaces analytiqués complexes. Invent. Math.4, 118–138 (1967)Google Scholar
  12. [G] Gamboa, J.M.: Constructibles du spectre réel a adhérance non constructible (Preprint 1985)Google Scholar
  13. [Kn] Knebusch, M.: On the local theory of signatures and reduced quadratic forms. Abh. Math. Semin. Univ. Hamb.51, 149–195 (1981)Google Scholar
  14. [Ma] Mahé, L.: Théorème de Pfister pour les variétés et anneaux de Witt réduits. Invent. Math.85, 53–72 (1986)Google Scholar
  15. [Mr] Marshall, M.: Spaces of orderings, IV. Can. J. Math.32, 603–627 (1980)Google Scholar
  16. [M] Matsumura, H.: Commutative Algebra. Second edition, Amsterdam: W.A. Benjamin Co., 1980Google Scholar
  17. [Rb] Robson, R.: Local semianalytic geometry (Preprint 1986)Google Scholar
  18. [Rt] Rotthaus, Ch.: On the approximation property of excellent rings: Invent. Math.88, 39–63 (1987)Google Scholar
  19. [Rz1] Ruiz, J.M.: On Hilbert's 17th problem and real nullstellensatz for global analytic functions. Math. Z.190, 447–454 (1985)Google Scholar
  20. [Rz2] Ruiz, J.M.: Cônes locaux et complétions. CR. Acad. Sci. Paris Série I,302, 67–69 (1986)Google Scholar
  21. [Sch] Schwartz, N.: Der Raum der Zusammenhangskomponenten einer reellen Varietät. Geom. Dedicata13, 361–396 (1983)Google Scholar
  22. [Sh] Shiota, M.: Equivalence of differentiable mappings and analytic mappings. IHES54, 37–122 (1981)Google Scholar
  23. [T] Tougeron, J.C.: Idéaux de fonctions différentiables. Ergeb. Math.71, Berlin Heidelberg New York: Springer 1972Google Scholar
  24. [W-B] Whitney, H., Bruhat, F.: Quelques proporiétés fondamentales des ensembles analytiquesréels. Comment. Math. Helv.33, 132–160 (1959)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • C. Andradas
    • 1
  • L. Bröcker
    • 2
  • J. M. Ruiz
    • 3
  1. 1.Departamento de AlgebraUniversidad Complutense de MadridMadridSpain
  2. 2.Mathematisches InstitutUniversität MünsterMünsterFederal Republic of Germany
  3. 3.Departamento de Geometréa & TopologíaUniversidad Complutense de MadridMadridSpain

Personalised recommendations