Inventiones mathematicae

, Volume 92, Issue 2, pp 349–383 | Cite as

Hecke algebras of typeA n and subfactors

  • Hans Wenzl


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B] Birman, J.: Braids, links and mapping class groups. Ann. Math. Stud.82 (1974)Google Scholar
  2. [F] [FYHLMO] Freyd, P., Yetter, D., Hoste, J., Lickorish, W.B.R., Millett, K., Ocneanu, A.: A new polynomial invariant of knots and links. Bull. Am. Math. Soc.12, 239–246 (1985)Google Scholar
  3. [G] Gantmacher, F.R.: Matrix theory, Vol. II, Chelsea Publishing Company: New York, 1974Google Scholar
  4. [HW] Handelman, D., Wenzl, H.: Closedness of index values for subfactors. Proc. Am Math. Soc.101, 277–282 (1987)Google Scholar
  5. [H] Hoefsmit, P.N.: Representations of Hecke algebras of finite groups with BN pairs of classical type. Thesis, University of British Columbia, 1974Google Scholar
  6. [JK] James, G., Kerber, A.: The representations of the symmetric group. Addison-Wesley: Reading, MassGoogle Scholar
  7. [J-1] Jones, V.F.R.: Index for subfactors. Invent. Math.72, 1–25 (1983)Google Scholar
  8. [J-2] Jones, V.F.R.: Braid groups, Hecke algebras and type II1 factors. Japan-US Conference proceedings, 1983Google Scholar
  9. [J-3] Jones, V.F.R.: A polynomial invariant for knots via von Neumann algebras. Bull. Am. Math. Soc.12, 103–111 (1985)Google Scholar
  10. [J-4] Jones, V.F.R.: Hecke algebra representations of braid groups. Ann. Math.126, 335–388 (1987)Google Scholar
  11. [L] Littlewood, D.: The theory of group characters. Oxford University Press, 1940Google Scholar
  12. [Mc] McDonald, I.: Symmetric functions and Hall polynomials. Clarendon Press: Oxford, 1979Google Scholar
  13. [M] Murnaghan, F.: The theory of group representations. Dover, New York, 1939Google Scholar
  14. [O] Ocneanu, A.: A polynomial invariant for knots: A combinatorial and an algebraic approach (Preprint, see [FYHLMO] for a shortened version)Google Scholar
  15. [PP1] Pimsner, M., Popa, S.: Entropy and index for subfactors. Ann. Sci. Ec. Norm. Super, 4e serie,19, 57–106 (1986)Google Scholar
  16. [PP2] Pimsner, M., Popa, S.: Iterating the basic construction (Preprint, INCREST)Google Scholar
  17. [St] Størmer, E.: Symmetric states of infinite tensor products ofC * algebras J. Funct. Anal.3, 48–68 (1969)Google Scholar
  18. [SV] Stratila, S., Voiculescu, D.: Representations ofAF-algebras and of the groupU(∞). Lect. Notes Math., Vol. 486. Berlin Heidelberg New York: Springer 1975Google Scholar
  19. [T] Thoma, E.: Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzaehlbaren, unendlichen, symmetrischen Gruppe. Math. Z.85, 40–61 (1964)Google Scholar
  20. [Wa] Wassermann, A.: Automorphic actions of compact groups on operator algebras. Thesis, University of Pennsylvania 1981Google Scholar
  21. [W-1] Wenzl, H.: On sequences of projections. C.R. Math. Rep. Acad. Sci. Canada IX,1, 5–9 (1987)Google Scholar
  22. [W-2] Wenzl, H.: Representations of Hecke algebras and subfactors. Thesis, University of Pennsylvania 1985Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Hans Wenzl
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations