Numerische Mathematik

, Volume 28, Issue 4, pp 431–443

Error estimates for the finite element solution of variational inequalities

Part I. Primal theory
  • Franco Brezzi
  • William W. Hager
  • P. A. Raviart
Article

Summary

We analyze the convergence of finite element approximations of some variational inequalities namely the “obstacle problem” and the “unilateral problem”. OptimalO(h) andO(h3/2−∈) error bounds for the obstacle problem (for linear and quadratic elements) and anO(h) error bound for the unilateral problem (with linear elements) are proved.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baiocchi, C., Pozzi G.A.: An evolution variational inequality related to a diffusion absorption problem, Appl. Math. Optim. (to appear)Google Scholar
  2. 2.
    Brézis, H.: Problèmes unilateraux. Thése d'etat, Paris, 1971; J. Math. Pures Appl., IX. Sér.72, 1–168 (1971)Google Scholar
  3. 3.
    Brézis, H.: Nouveaux théorèmes de régularité pour les problèmes unilatéraux. Recontre entre physiciens théoriciens et mathématiciens, Strasbourg 12 (1971)Google Scholar
  4. 4.
    Brézis, H.: Seuil de régularité pour certains problèmes unilateraux C.R. Acad. Sci. Paris Sér. A273, 35–37 (1971)Google Scholar
  5. 5.
    Brezzi, F., Sacchi, G.: A finite element approximation of a variational inequality related to hydraulics. To appearGoogle Scholar
  6. 6.
    Brézis, H. R., Stampacchia, G.: Sur la régularité de la solution d'inéquations elliptiques. Bull. Soc. Math. France96, 153–180 (1968)Google Scholar
  7. 7.
    Ciarlet, P.G.: Numerical analysis of the finite element method. Séminaire de Mathématiques Supérieures, Université de Montréal, 16 June–11 July, 1975 (to appear)Google Scholar
  8. 8.
    Ciarlet, P. G., Raviart, P.A.: General lagrange and hermite interpolation inR″ with applications to finite element methods. Arch. Rational Mech. Anal.46, 177–199 (1972)CrossRefGoogle Scholar
  9. 9.
    Falk, R.: Error estimates for the approximation of a class of variational inequalities. Math. Comput.28, 963–971 (1974)Google Scholar
  10. 10.
    Falk, R. S., Mercier, B.: Error estimates for elastoplastic problems. R.A.I.R.O. Anal. Num.11, 117–134 (1977)Google Scholar
  11. 11.
    Frehse, J.: Two dimensional variational problems with thin obstacles. Math. Z.143, 279–288 (1975)Google Scholar
  12. 12.
    Gagliardo, E.: Proprietà di alcuni classi di funcioni in pui variabili. Ricerche Mat.,7, 102–137 (1958)Google Scholar
  13. 13.
    Giaquinta, M., Modica, G.: Regolarità lipschitziana per le soluzioni di alcuni problemi di minimo con vincolo. Ann. Mat. Pura Appl., IV. Ser. (to appear)Google Scholar
  14. 14.
    Glowinski, R.: Introduction to the approximation of elliptic variational inequalities. Report 76006, University of Paris VI, France, 1976Google Scholar
  15. 15.
    Glowinski, R., Lions, J. L., Trémolieres, R.: Analyse numérique des inéquations variationelles. Paris: Dunod 1976Google Scholar
  16. 16.
    Hager, W.W.: State constrained convex control problems: Part II. Approximation. Séminaire IRIA, 1975Google Scholar
  17. 17.
    Hlaváček, I.: Dual finite element analysis for elliptic problems with obstacles on the boundary. I. To appearGoogle Scholar
  18. 18.
    Kinderlehrer, D.: How a minimal surface leaves an obstacle. Acta Math.130 221–292 (1973)Google Scholar
  19. 19.
    Lewy, H., Stampacchia, G.: On the regularity of the solution of a variational inequality. Commun. pure appl. Math.22, 153–188 (1969)Google Scholar
  20. 20.
    Lions, J. L.: Problèmes aux limites dans les équations aux dérivées partielles. Montreal, Canada: University of Montreal Press 1965Google Scholar
  21. 21.
    Lions, J.L.: Équations aux dérivées partielles et calcul des variations. Cours de la Faculté des Sciences de Paris, 1967Google Scholar
  22. 22.
    Lions, J.L., Magenes, E.: Problèmes aux Limites non Homogènes et Applications, tome I. Paris: Dunod 1968Google Scholar
  23. 23.
    Lions, J.L., Stampacchia, G.: Variational inequalities. Comm. Pure Appl. Math.20, 493–519 (1967)Google Scholar
  24. 24.
    Mosco, U., Strang, G.: One sided approximation and variational inequalities. Bull. Amer. Math. Soc.80, 308–312 (1974)Google Scholar
  25. 25.
    Scarpini, F., Vivaldi, M. A.: Error estimates for the approximation of some unilateral problems R.A.I.R.O. Anal. Num.11, 197–208 (1977)Google Scholar
  26. 26.
    Strang, G.: Approximation in the finite element method. Numer. Math.19, 81–98 (1972)CrossRefGoogle Scholar
  27. 27.
    Strang, G.: The finite element method-linear and nonlinear applications. Proceedings of the International Congress of Mathematicians, Vancouver, Canada, 1974Google Scholar
  28. 28.
    Strang, G., Berger, A.: The change in solution due to change in domain. Proc. AMS Summer Institute on Partial Differential Equations, Berkeley, 1971Google Scholar
  29. 29.
    Strang, G., Fix, G.: An analysis of the finite element method. Englewood Cliffs New Jersey: Prentice-Hall 1973Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Franco Brezzi
    • 1
  • William W. Hager
    • 2
  • P. A. Raviart
    • 3
  1. 1.Politecnico di Torino and Laboratorio di Analisi Numerica del C.N.R.PaviaItaly
  2. 2.Department of MathematicsCarnegie-Mellon UniversityPittsburghUSA
  3. 3.Analyse NumériqueUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations