Inventiones mathematicae

, Volume 9, Issue 3, pp 201–234 | Cite as

Local euler characteristics

  • B. Mazur
  • L. Roberts


Euler Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andre, M.: Méthode Simpliciale en Algèbre Homologique et Algèbre Commutative. Lecture Notes in Math. 37. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  2. 2.
    Cartier, P.: Groupes Algébriques et Groupes Formels. Colloque sur la théorie des groupes algébriques. Brussels: Centre Belge de Recherches Mathématiques 1962.Google Scholar
  3. 3.
    Greenberg, M.: Rational points in Henselian discrete valuation rings. Publications Mathematiques, I.H.E.S. No. 31, 59–64, Paris: Presses Universitaires de France 1966.Google Scholar
  4. 4.
    Grothendieck, A.: Catégories Cofibrées Additives et Complexe Cotangent Relatif. Lecture Notes in Math. 79. Berlin-Heidelberg-New York: Springer 1968.Google Scholar
  5. 5.
    —: Technique de descente et théorèmes d'existence en géométrie algébrique. Séminaire Bourbaki No. 190, December 1959. Amsterdam: W. A. Benjamin, Inc. 1966.Google Scholar
  6. 6.
    Grothendieck, A.: Séminaire de Géométrie Algébrique. Mimeogr. notes, I.H.E.S.1, 1960/61;4, 1963/64. Amsterdam: North-Holland (to be published).Google Scholar
  7. 7.
    Grothendieck, A.: Le Groupe de Brauer III (continuation of Le Groupe de Brauer I, II); Séminaire Bourbaki No. 290, 297. Mimeogr. notes I.H.E.S. Amsterdam: North-Holland (Paris: Massai & Cie.) 1968.Google Scholar
  8. 8.
    Grothendieck, A., Demazure, M.: Schémas en Groups. Séminaire de Géométrie Algébrique de l'I.H.E.S. (mimeogr. notes) 1962/64. Amsterdam: North-Holland (to be published).Google Scholar
  9. 9.
    —, Dieudonné, J.: Elements de Géométrie Algébrique. Publications Mathématiques de l'I.H.E.S.. Paris: Presses Universitaires de France (Volume 1 appeared in 1960).Google Scholar
  10. 10.
    Hartshorne, R.: Residues and duality. Lecture Notes in Math. No. 20. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  11. 11.
    Lang, S.: Algebraic groups over finite fields. Amer. J. Math.78, 555–563 (1956).Google Scholar
  12. 12.
    Lichtenbaum, S., Schlessinger, M.: The cotangent complex of a morphism. Trans. Amer. Math. Soc., 41–70, July, 1967.Google Scholar
  13. 13.
    Mazur, B.: Local flat duality (to appear in American Journal of Math.).Google Scholar
  14. 14.
    Quillen, D.: Homotopic algebra. Lecture notes in Math. Berlin-Göttingen-New York: Springer 1967.Google Scholar
  15. 15.
    —: Differentials and derivations. Mimeogr. notes M.I.T. 1967 (a Summary appears in: Proceedings of the Conference on Categorial Algebra. American Math. Soc. Providence 1969).Google Scholar
  16. 16.
    Raynaud, M.: Passage au quotient par une relation d'equivalence plate. Proc. Conf. Local Fields, 78–85. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  17. 17.
    Roberts, L.: On the flat cohomology of finite group schemes. Harvard Thesis 1968.Google Scholar
  18. 18.
    Serre, J.-P.: Algèbre Locale. Lecture notes in Math. Springer-Verlag.Google Scholar
  19. 19.
    —: Lie algebras and Lie groups. New York: Benjamin 1965.Google Scholar
  20. 20.
    —: Corps Locaux. Paris: Hermann & Cie. 1962.Google Scholar
  21. 21.
    —: Cohomologie Galoisienne. Lecture Notes in Math. 5. Berlin-Göttingen-New York: Springer 1964.Google Scholar
  22. 22.
    Shatz, S.: The cohomological dimension of certain Grothendieck topologies. Annals of Math.83, No. 3, 572–595 (1966).Google Scholar
  23. 23.
    Shuck, J.: Counting zeros of polynomials modulop k via integration onp-adic manifolds. Northeastern University doctoral dissertation, 1969, and A.M.S. Lecture notes in connection with the Summer Institute in Number Theory, Stony Brook, 1969. Mimeogr. form, distributed by American Math. Soc., Providence.Google Scholar
  24. 24.
    Tate, J.:p-divisible groups. Proceedings Conference on Local Fields, 158–183. Berlin-Göttingen-New York: Springer 1967.Google Scholar
  25. 25.
    Tate, J., Duality theorems in Galois cohomology over number fields, pp. 288–295. Proceedings of the International Congress of Mathematicians, Djursholm: Institut Mittag-Leffler 1962.Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • B. Mazur
    • 1
  • L. Roberts
    • 2
  1. 1.Harvard UniversityCambridge
  2. 2.University of British ColumbiaVancouverCanada

Personalised recommendations