Advertisement

Inventiones mathematicae

, Volume 7, Issue 3, pp 243–268 | Cite as

Minimal cones and the Bernstein problem

  • E. Bombieri
  • E. De Giorgi
  • E. Giusti
Article

Keywords

Minimal Cone Bernstein Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almgren, F.J.Jr.: Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem. Ann. of Math.85, 277–292 (1966).Google Scholar
  2. 2.
    Birkhoff, G., and G. C. Rota: Ordinary differential equations. Boston: Ginn & Co. 1962.Google Scholar
  3. 3.
    Bombieri, E.: Nuovi risultati sulle ipersuperfici minimali non parametriche. Rend. Sem. Mat. Fis. Milano38, 2–12 (1968).Google Scholar
  4. 4.
    Bombieri, E., E. De Giorgi, and M. Miranda: Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche. Archive for Rat. Mech. and Analysis (1968).Google Scholar
  5. 5.
    De Giorgi, E.: Frontiere orientate di misura minima. Sem. Mat. Sc. Norm. Sup. Pisa, A.A. 1960/61.Google Scholar
  6. 6.
    —: Una estensione del teorema di Bernstein. Ann. Sc. Norm. Sup. Pisa19, 79–85 (1965).Google Scholar
  7. 7.
    Federer, H., and W. H. Fleming: Normal and integral currents. Ann. of Math.72, 458–520 (1960).Google Scholar
  8. 8.
    Fleming, W. H.: On the oriented Plateau problem. Rend. Circolo Mat. Palermo9, 69–89 (1962).Google Scholar
  9. 9.
    Miranda, M.: Sul minimo dell'integrale del gradiente di una funzione. Annali Sc. Norm. Sup. di Pisa19, 627–665 (1965).Google Scholar
  10. 10.
    —: Un teorema di esistenza e unicità per il problema dell'area minima inn variabili. Annali Sc. Norm. Sup. di Pisa19, 233–250 (1965).Google Scholar
  11. 11.
    —: Comportamento delle successioni convergenti di frontiere minimali. Rend. Sem. Mat. Padova38, 238–257 (1967).Google Scholar
  12. 12.
    Simons, J.: Minimal varieties in riemannian manifolds. Annals of Math.88, 62–105 (1968).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • E. Bombieri
    • 1
  • E. De Giorgi
    • 1
  • E. Giusti
    • 1
  1. 1.Istituto Matematico ≪Leonida Tonelli≫Università di PisaPisa(Italia)

Personalised recommendations