Advertisement

Inventiones mathematicae

, Volume 53, Issue 1, pp 1–44 | Cite as

Intersection numbers of sections of elliptic surfaces

  • David A. Cox
  • Steven Zucker
Article

Keywords

Intersection Number Elliptic Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clemens, C.H.: Degeneration of Kähler manifolds. Duke Math. J.44, 215–290 (1977)Google Scholar
  2. 2.
    Deligne, P.: Equations differentielles à points singuliers réguliers. In: Lecture Notes in Math. 163. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  3. 3.
    Eichler, M.: Eine Verallgemeinerung der Abelschen Integrale. Math. Zeitschr.67, 267–298 (1957)Google Scholar
  4. 4.
    Hoyt, W.: Parabolic cohomology and cusp forms of the second kind for extensions of the field of modular functions. Preprint 1978Google Scholar
  5. 5.
    Hoyt, W., Schwartz, C.: Period relations for the Weierstrass equationy 2=4x 33uxu. In preparation (1979)Google Scholar
  6. 6.
    Iitaka, S.: Deformations of compact complex surfaces. In: Global analysis, papers in honor of K. Kodaira. Princeton: Princeton University Press 1969Google Scholar
  7. 7.
    Kas, A.: On the deformation types of regular elliptic surfaces. Preprint 1976Google Scholar
  8. 8.
    Kodaira, K.: On compact analytic surfaces, II–III. Annals of Math.77, 563–626;78, 1–40 (1963)Google Scholar
  9. 9.
    Kodaira, K.: On homotopyK−3 surfaces. In: Essays on topology and related topics, Mémoires dédiés à George deRham. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  10. 10.
    Kodaira, K.: On the structure of compact analytic surfaces, I. Amer. J. Math.87, 751–798 (1964)Google Scholar
  11. 11.
    Mandelbaum, R.: On the topology of elliptic surfaces. Preprint 1977Google Scholar
  12. 12.
    Mandelbaum, R.: On the topology of non-simply connected elliptic surfaces with degenerate fibers. Manuscript 1978Google Scholar
  13. 13.
    Manin, Ju.I.: The Tate height of points on an abelian variety; its variants and applications. Amer. Math. Soc. Transl. (Series 2)59, 82–110 (1966)Google Scholar
  14. 14.
    Néron, A.: Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. Pub. Math. I.H.E.S.21, (1964)Google Scholar
  15. 15.
    Néron, A.: Quasi-fonctions et hauteurs sur les variétés abéliennes. Annals of Math.82, 249–331 (1965)Google Scholar
  16. 16.
    Ogg, A.: Cohomology of abelian varieties over function fields.Annals of Math.76, 185–212 (1962)Google Scholar
  17. 17.
    Schwartz, C.: Independent solutions of certain Weierstrass equations. Manuscript 1977Google Scholar
  18. 18.
    Schwartz, C.: On generators of the group of rational solutions of a certain Weierstrass equation. Trans. A.M.S., to appearGoogle Scholar
  19. 19.
    Shafarevitch, I.: Principal homogeneous spaces defined over a function field. Amer. Math. Soc. Transl. (Series 2)37, 85–114 (1964)Google Scholar
  20. 20.
    Shafarevitch, I., and others: Algebraic Surfaces. Moscow: Proc. Steklov Institute 1965; English Translation, Providence: A.M.S. 1967Google Scholar
  21. 21.
    Shimura, G.: Introduction to the arithmetic theory of automorphic forms. Princeton: Princeton University Press, 1971Google Scholar
  22. 22.
    Shimura, G.: Sur les intégrales attachées aux formes automorphes. J. Math. Soc. Japan11, 291–311 (1959)Google Scholar
  23. 23.
    Shioda, T.: On elliptic modular surfaces. J. Math. Soc. Japan24, 20–59 (1972)Google Scholar
  24. 24.
    Zucker, S.: Generalized intermediate Jacobians and the theorem on normal functions. Inventiones Math.33, 185–222 (1976)Google Scholar
  25. 25.
    Zucker, S.: Hodge theory with degenerating coefficients:L 2 cohomology in the Poincaré metric, Annals of Math. (1979)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • David A. Cox
    • 1
  • Steven Zucker
    • 1
  1. 1.Department of MathematicsRutgers UniversityNew BrunswickUSA

Personalised recommendations