Inventiones mathematicae

, Volume 53, Issue 1, pp 1–44

Intersection numbers of sections of elliptic surfaces

  • David A. Cox
  • Steven Zucker
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clemens, C.H.: Degeneration of Kähler manifolds. Duke Math. J.44, 215–290 (1977)Google Scholar
  2. 2.
    Deligne, P.: Equations differentielles à points singuliers réguliers. In: Lecture Notes in Math. 163. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  3. 3.
    Eichler, M.: Eine Verallgemeinerung der Abelschen Integrale. Math. Zeitschr.67, 267–298 (1957)Google Scholar
  4. 4.
    Hoyt, W.: Parabolic cohomology and cusp forms of the second kind for extensions of the field of modular functions. Preprint 1978Google Scholar
  5. 5.
    Hoyt, W., Schwartz, C.: Period relations for the Weierstrass equationy 2=4x 33uxu. In preparation (1979)Google Scholar
  6. 6.
    Iitaka, S.: Deformations of compact complex surfaces. In: Global analysis, papers in honor of K. Kodaira. Princeton: Princeton University Press 1969Google Scholar
  7. 7.
    Kas, A.: On the deformation types of regular elliptic surfaces. Preprint 1976Google Scholar
  8. 8.
    Kodaira, K.: On compact analytic surfaces, II–III. Annals of Math.77, 563–626;78, 1–40 (1963)Google Scholar
  9. 9.
    Kodaira, K.: On homotopyK−3 surfaces. In: Essays on topology and related topics, Mémoires dédiés à George deRham. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  10. 10.
    Kodaira, K.: On the structure of compact analytic surfaces, I. Amer. J. Math.87, 751–798 (1964)Google Scholar
  11. 11.
    Mandelbaum, R.: On the topology of elliptic surfaces. Preprint 1977Google Scholar
  12. 12.
    Mandelbaum, R.: On the topology of non-simply connected elliptic surfaces with degenerate fibers. Manuscript 1978Google Scholar
  13. 13.
    Manin, Ju.I.: The Tate height of points on an abelian variety; its variants and applications. Amer. Math. Soc. Transl. (Series 2)59, 82–110 (1966)Google Scholar
  14. 14.
    Néron, A.: Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. Pub. Math. I.H.E.S.21, (1964)Google Scholar
  15. 15.
    Néron, A.: Quasi-fonctions et hauteurs sur les variétés abéliennes. Annals of Math.82, 249–331 (1965)Google Scholar
  16. 16.
    Ogg, A.: Cohomology of abelian varieties over function fields.Annals of Math.76, 185–212 (1962)Google Scholar
  17. 17.
    Schwartz, C.: Independent solutions of certain Weierstrass equations. Manuscript 1977Google Scholar
  18. 18.
    Schwartz, C.: On generators of the group of rational solutions of a certain Weierstrass equation. Trans. A.M.S., to appearGoogle Scholar
  19. 19.
    Shafarevitch, I.: Principal homogeneous spaces defined over a function field. Amer. Math. Soc. Transl. (Series 2)37, 85–114 (1964)Google Scholar
  20. 20.
    Shafarevitch, I., and others: Algebraic Surfaces. Moscow: Proc. Steklov Institute 1965; English Translation, Providence: A.M.S. 1967Google Scholar
  21. 21.
    Shimura, G.: Introduction to the arithmetic theory of automorphic forms. Princeton: Princeton University Press, 1971Google Scholar
  22. 22.
    Shimura, G.: Sur les intégrales attachées aux formes automorphes. J. Math. Soc. Japan11, 291–311 (1959)Google Scholar
  23. 23.
    Shioda, T.: On elliptic modular surfaces. J. Math. Soc. Japan24, 20–59 (1972)Google Scholar
  24. 24.
    Zucker, S.: Generalized intermediate Jacobians and the theorem on normal functions. Inventiones Math.33, 185–222 (1976)Google Scholar
  25. 25.
    Zucker, S.: Hodge theory with degenerating coefficients:L 2 cohomology in the Poincaré metric, Annals of Math. (1979)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • David A. Cox
    • 1
  • Steven Zucker
    • 1
  1. 1.Department of MathematicsRutgers UniversityNew BrunswickUSA

Personalised recommendations