Inventiones mathematicae

, Volume 58, Issue 2, pp 107–160 | Cite as

On the determinacy of smooth map-germs

  • Andrew du Plessis
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnol'd, V.I.: Normal forms of functions in neighbourhoods of degenerate critical points. Russian Math. Surveys 29, 10–50 (1974)Google Scholar
  2. 2.
    Arnol'd, V.I.: Local normal forms of functions. Invent. math.35, 87–109 (1976)Google Scholar
  3. 3.
    Belitskii, G.R.: Equivalence and normal forms of germs of smooth mappings. Russian Math. Surveys33, 107–177 (1978)Google Scholar
  4. 4.
    Bochnak, J., Kucharz, W.: Sur les germes d'applications différentiables à singularités isolées. Trans. AMS252, 115–131 (1979)Google Scholar
  5. 5.
    Gaffney, T.: Properties of finitely-determined germs. Thesis, Brandeis University, 1975Google Scholar
  6. 6.
    Gaffney, T.: On the order of determination of a finitely-determined germ Invent. Math.37, 83–92 (1976)Google Scholar
  7. 7.
    Gaffney, T.: A note on the order of determination of a finitely-determined germ. Invent. Math.52, 127–130 (1979)Google Scholar
  8. 8.
    Gibson, C.G., Wirthmüller, K., du Plessis, A.A., Looijenga, E.J.N.: Topological stability of smooth mappings, Ch. III. Springer LNM 552. Berlin-Heidelberg-New York: Springer-Verlag 1976Google Scholar
  9. 9.
    Gomozov, E.P.: A versality theorem for a bilateral group of changes of variables. Funct. Anal. Appl.9, 332–333 (1975)Google Scholar
  10. 10.
    Latour, F.: Stabilité des champs d'applications différentiables; généralisation d'un théorème de J. Mather. Comptes Rendus Acad. Sci.268(A), 1331–1334 (1969)Google Scholar
  11. 11.
    Martinet, J.: Deplorements versels des applications différentiables et classification des applications stables. In: Singularités d'Applications Différentiables (O. Burlet and F. Ronga, eds.) pp. 144, Springer LNM 535. Berlin-Heidelberg-New York: Springer-Verlag 1976Google Scholar
  12. 12.
    Martinet, J.: Deploiements stables des germes de type fini, et détermination finie des applications différentiables. Preprint, Université de Strasbourg, 1976Google Scholar
  13. 13.
    Mather, J.N.: Stability ofC mappings, III: finitely determined germs. Publ. Math. IHES35, 127–156 (1969)Google Scholar
  14. 14.
    Mather, J.N.: Stability ofC mappings, IV: classification of stable germs by ℝ-algebras. Publ. Math. IHES37, 223–248 (1970)Google Scholar
  15. 15.
    Mather, J.N.: Stability ofC mappings, VI: the nice dimensions. In: Proc. Liverpool Singularities Symp. I (C.T.C. Wall, ed.). Springer LNM 192. Berlin-Heidelberg-New York: Springer-Verlag 1971Google Scholar
  16. 16.
    Mather, J.N.: Generic Projections. Ann. of Math.98, 226–245 (1973)Google Scholar
  17. 17.
    Nirenberg, L.: A proof of the Malgrange Preparation Theorem. In: Proc. Liverpool Singularities Symp. I (C.T.C. Wall, ed.). Springer LNM 192. Berlin-Heidelberg-New York: Springer-Verlag 1971Google Scholar
  18. 18.
    Siersma, D.: Classification and deformation of singularities. Thesis, University of Amsterdam, 1974Google Scholar
  19. 19.
    Siersma, D.: Periodicities in Arnol'd's lists of singularities. In: Real and complex singularities, Oslo 1976 (P. Holm, ed.) pp.497–524, Sijthoff & Noordhoff 1977Google Scholar
  20. 20.
    Wall, C.T.C.: Lectures onC -stability and classification. In: Proc. Liverpool Singularities Symp. I (C.T.C. Wall, ed.). Springer LNM 192. Berlin-Heidelberg-New York: Springer-Verlag 1971Google Scholar
  21. 21.
    Wall, C.T.C.: Are maps finitely determined in general? Bull. LMS11, 151–154 (1979)Google Scholar
  22. 22.
    Wassermann, G.: Stability of Unfoldings. Springer LNM 393. Berlin-Heidelberg-New York: Springer-Verlag 1974Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Andrew du Plessis
    • 1
  1. 1.Matematisk InstitutUniversitetsparkenAarhus CDenmark

Personalised recommendations