Inventiones mathematicae

, Volume 44, Issue 3, pp 279–293 | Cite as

A construction of representations of Weyl groups

  • T. A. springer


Weyl Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benard, M.: On the Schur indices of characters of the exceptional Weyl groups. Ann. of Math.94, 89–107 (1971)Google Scholar
  2. 2.
    Borel, A., Carter, R., Curtis, C.W., Iwahori, N., Springer, T.A., Steinberg, R.: Seminar in algebraic groups and related finite groups. Lecture Notes in Math. 131. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  3. 3.
    Hotta, R., Springer, T.A.: A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups. Inventiones math.41, 113–127 (1977)Google Scholar
  4. 4.
    SGA4, Théorie des topos et cohomologie étale des schémas (Séminaire dirigé par M. Artin, A. Grothendieck et J.L. Verdier), Lecture Notes in Math. 269. Berlin-Heidelberg-New York: Springer 1972/73Google Scholar
  5. 5.
    Shoji, T.: The conjugacy classes of Chevalley groups of type (F 4) over finite fields of characteristicp ≠ 2. Journal Fac. Sc. Tokyo Univ.21, 1–17 (1974).Google Scholar
  6. 6.
    Spaltenstein, N.: On the fixed point set of a unipotent element on the variety of Borel subgroups. Topology16, 203–204 (1977)Google Scholar
  7. 7.
    Springer, T.A.: Trigonometric sums, Green functions of finite groups and representations of Weyl groups. Inv. Math.36, 173–207 (1976)Google Scholar
  8. 8.
    Steinberg, R.: On the desingularization of the unipotent variety. Inventiones math.36, 209–224 (1976)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • T. A. springer
    • 1
  1. 1.Mathematisch Instituut Rijksuniversiteit te UtrechtUtrechtNiederlande

Personalised recommendations