Advertisement

Inventiones mathematicae

, Volume 44, Issue 3, pp 225–258 | Cite as

On automorphism groups of compact Kähler manifolds

  • Akira Fujiki
Article

Keywords

Manifold Automorphism Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akao, K.: On prehomogeneous compact Kähler manifolds. In: Proc. Int. Conf. on Manifolds and Related Topics in Topology, pp. 365–372. Tokyo Univ. of Tokyo Press 1964Google Scholar
  2. 2.
    Barth, W., Oeljeklaus, E.: Über die Albanese-Abbildung einer fasthomogenen Kählermannigfaltigkeit. Math. Ann.211, 47–62 (1974)Google Scholar
  3. 3.
    Blanchard, A.: Sur les variétés analytiques complexes. Ann. Sci. ecole norm. super.73, 157–202 (1956)Google Scholar
  4. 4.
    Borel, A.: Linear Algebraic Groups. Benjamin 1969Google Scholar
  5. 5.
    Borel, A., Remmert, R.: Über kompakte homogene Kählersche Mannigfaltigkeiten. Math. Ann.145, 429–439 (1962)Google Scholar
  6. 6.
    Carrell, J.B.: Holomorphically injective complex toral actions. In: Proc. of the second conference on compact transformation groups, pp. 205–236. Lecture Notes in Math. No. 299 (1972)Google Scholar
  7. 7.
    Carrell, J.B., Lieberman, D.: Holomorphic vector fields and Kähler manifolds. Invent. Math.21, 303–309 (1973)Google Scholar
  8. 8.
    Conner, P.E., Raymond, F.: Holomorphic Seifert fibring. In: Proc. of the second conference on compact transformation groups, pp. 134–204. Lecture Notes in Math. No. 299 (1972)Google Scholar
  9. 9.
    Deligne, P.: Theorime de Lefschet et critéres de degenerescence de suites spectrals, Publ. Math. IHES35, 107–126 (1968)Google Scholar
  10. 10.
    Dold, A.: Lectures on algebraic topology. Springer Bd. 200, 1972Google Scholar
  11. 11.
    Douady, A.: Le probléme de modules pur les sous-espaces analytiques compacts d'un espace analytique donné. Ann. Inst. Fourier (Grenoble)16, 1–95 (1966)Google Scholar
  12. 12.
    Fujiki, A.: Closedness of the Douady spaces of compact Kähler spaces (to appear in Publ. Math. RIMS Kyoto Univ.)Google Scholar
  13. 13.
    Fujiki, A.: Countability of the Douady space of a complex space (to appear)Google Scholar
  14. 14.
    Hironaka, H.: Bimeromorphic smoothing of a complex-analytic space. Math. Inst. Warwick Univ., England 1971Google Scholar
  15. 15.
    Hironaka, H.: Flattening theorem in complex-analytic geometry. Amer. J. Math.97, 503–547 (1975)Google Scholar
  16. 16.
    Holmann, H.: Komplexe Räume mit komplexen Transformationsgruppen. Math. Ann.150, 327–360 (1963)Google Scholar
  17. 17.
    Kobayashi, S.: Transformation groups in differential geometry. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  18. 18.
    Matsumura, H.: On algebraic groups of birational transformations. Rend. Acad. Naz. Lincei Ser. VII34, 151–155 (1963)Google Scholar
  19. 19.
    Matsushima, Y.: Holomorphic vector fields on compact Kähler manifolds. Conf. Board Math. Sci. Regional Conf. Ser. in Math. 7, Amer. Math. Soc. 1971Google Scholar
  20. 20.
    Morimoto, A.: Non-compact complex Lie groups without non-constant holomorphic functions. In: Proc. of the conf. on Complex Analysis, pp. 256–272. Berlin-Heidelberg-New York: Springer 1964Google Scholar
  21. 21.
    Remmert, R., Ven, A. van de: Zur Funktionentheorie homogener komplexer Mannigfaltigkeiten. Topology2, 137–157 (1963)Google Scholar
  22. 22.
    Potters, J.: On almost homogeneous compact complex analytic surfaces. Invent. Math.8, 244–266 (1969)Google Scholar
  23. 23.
    Posenlichit, M.: Some basic theorems on algebraic groups. Amer. J. Math.78, 401–443 (1956)Google Scholar
  24. 24.
    Serre, J-P: Groupes algebriques et corps de classes. Paris: Hermann 1959Google Scholar
  25. 25.
    Serre, J-P.: On the fundamental group of a unirational variety. Journal of London Math. Soc.34, 481–484 (1959)Google Scholar
  26. 26.
    Sommese, A.J.: Holomorphic vector fields on compact Kähler manifolds. Math. Ann.210, 75–82 (1974)Google Scholar
  27. 27.
    Sommese, A.J.: Extension Theorems for reductive group actions on compact Kähler manifolds. Math. Ann.218, 107–116 (1975)Google Scholar
  28. 28.
    Sumihiro, H.: Equivariant completion. Journal of Math. of Kyoto Univ.14, 1–28 (1974)Google Scholar
  29. 29.
    Ueno, K.: Classification theory of algebraic varieties and compact complex spaces. Lecture Notes in Math. No. 439 Springer (1975)Google Scholar
  30. 30.
    Weil, A.: On algebraic groups of transformations. Amer. J. Math.77, 355–391 (1955)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Akira Fujiki
    • 1
  1. 1.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan

Personalised recommendations