Inventiones mathematicae

, Volume 44, Issue 3, pp 201–224 | Cite as

Some results on the Mordell-Weil group of the Jacobian of the Fermat curve

  • Benedict H. Gross
  • David E. Rohrlich


Fermat Fermat Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bashmakov, M.I.: The Cohomology of Abelian Varieties over a Number Field. Russ. Math. Surveys27, 25–70 (1972)Google Scholar
  2. 2.
    Birman, A.: Proof and Examples that the Equation of Fermat's Last Theorem is Solvable in Integral Quaternions. Riveon Lematematika4, pp. 62–64. In Hebrew, with English summary (1950)Google Scholar
  3. 3.
    Borevich, Z., Shafarevich, I.: Number Theory. New York: Academic Press 1966Google Scholar
  4. 4.
    Carlitz, L., Olson, F.R.: Maillet's Determinat. Proc. Amer. Math. Soc.6, 265–269 (1955)Google Scholar
  5. 5.
    Deligne, P.: Variétés Abéliennes Ordinaires sur un Corps Fini. Inven. Math.8, 238–243 (1969)Google Scholar
  6. 6.
    Davenport, H. Hasse, H.: Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen. J. reine angew. Math.172, 151–182 (1934)Google Scholar
  7. 7.
    Faddeev, D.K.: On the Divisor Class Groups of some Algebraic Curves. Dokl. Tom 136 pp. 296–298 =Sov. Math. Vol.2, No. 1, 67–69 (1961) Faddeev, D.K.: Invariants of Divisor Classes for the Curvesx k (1−x)=y in an-adic Cyclotomic Field. Trudy Mat. (In Russian) Inst. Steklov64, 284–293 (1961)Google Scholar
  8. 8.
    Hasse, H.: Zetafunktion undL-Funktionen zu einem arithmetischen Funktionenkörper vom Fermatschen Typus. Abhand. der Deut. Akad. der Wissen. zu Berlin, 1955Google Scholar
  9. 9.
    Koblitz, N.:P-adic Variation of the Zeta-Function over Families of Varieties Defined over Finite Fields. Compos. Math.31, 119–218 (1975)Google Scholar
  10. 10.
    Koblitz, N., Rohrlich, D.: Simple Factors in the Jacobian of a Fermat Curve (To appear in Canadian J. of Math.)Google Scholar
  11. 11.
    Mazur, B.: Cohomology of the Fermat Group Scheme. Unpublished manuscript (1977)Google Scholar
  12. 12.
    Oort, F., Tate, J.: Group Schemes of Prime Order. Annales Scient. de l'Ecole Norm. Sup., 4ème Série T.3, fasc. 1, 1–21 (1970)Google Scholar
  13. 13.
    Serre, J.-P.: Lie Algebras and Lie Groups. Benjamin: Reading, 1965Google Scholar
  14. 14.
    Shimura, G., Taniyama, Y.: Complex Multiplication of Abelian Varieties and its Applications to Number Theory. Tokyo: Math. Soc. Japan 1961Google Scholar
  15. 15.
    Swinnerton-Dyer, H.P.F.: The Conjectures of Birch and Swinnerton-Dyer, and of Tate. In: Proc. of a Conference on Local Fields. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  16. 16.
    Tate, J.: Fourier Analysis and Hecke's Zeta-function. In: J.W. Cassels and A. Fröhlich, Algebraic Number Theory. Proc. of the Brighton Conference, pp. 305–347. New York: Academic Press 1968Google Scholar
  17. 17.
    Tate, J.: Local Constants. In: A. Fröhlich, Algebraic Numberfields, Prof. of the Durham Conference, 89–133. New York: Academic Press 1977Google Scholar
  18. 18.
    Weil, A.: Number of Solutions of Equations in Finite Fields. Bull. AMS55, 497–508 (1949)Google Scholar
  19. 19.
    Weil, A.: Jacobi Sums as Grössencharaktere. Trans. AMS73, 487–495 (1952)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Benedict H. Gross
    • 1
  • David E. Rohrlich
    • 1
  1. 1.Department of Mathematics, Science CenterHarvard UniversityCambridgeUSA

Personalised recommendations