Homology fibrations and the “group-completion” theorem
Article
- 315 Downloads
- 67 Citations
Preview
Unable to display preview. Download preview PDF.
References
- 1.Adams, J. F.: On the groupsJ(X)-I. Topology2, 181–195 (1963)Google Scholar
- 2.Barratt, M. G.: A note on the cohomology of semigroups. J. Lond. Math. Soc.36, 496–498 (1961)Google Scholar
- 3.Barratt, M. G., Priddy, S. B.: On the homology of non-connected monoids and their associated groups. Comm. Math. Helvet.47, 1–14 (1972)Google Scholar
- 4.May, J. P.: Classifying spaces and fibrations. Mem. Amer. Math. Soc.155 (1975)Google Scholar
- 5.McDuff, D.: Configuration spaces of positive and negative particles. Topology,14, 91–107 (1975)Google Scholar
- 6.Quillen, D. G.: On the group completion of a simplicial monoid. Unpublished preprintGoogle Scholar
- 7.Quillen, D. G.: Higher algebraicK-theory I. In: AlgebaicK-theory 1, 85–147. Lecture Notes in Mathematics341, Berlin-Heidelberg-New York: Springer 1973Google Scholar
- 8.Segal, G. B.: Classifying spaces and spectral sequences. Publ. Math. I.H.E.S. (Paris)34, 105–112 (1968)Google Scholar
- 9.Segal, G. B.: Categories and cohomology theories. Topology13, 293–312 (1974)Google Scholar
- 10.Segal. G.B.: The classifying space for foliations. (To appear)Google Scholar
- 11.Wagoner, J. B.: Delooping classifying spaces in algebraicK-theory. Topology11, 349–370 (1972)Google Scholar
Copyright information
© Springer-Verlag 1976