Advertisement

Inventiones mathematicae

, Volume 31, Issue 3, pp 279–284 | Cite as

Homology fibrations and the “group-completion” theorem

  • D. McDuff
  • G. Segal
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, J. F.: On the groupsJ(X)-I. Topology2, 181–195 (1963)Google Scholar
  2. 2.
    Barratt, M. G.: A note on the cohomology of semigroups. J. Lond. Math. Soc.36, 496–498 (1961)Google Scholar
  3. 3.
    Barratt, M. G., Priddy, S. B.: On the homology of non-connected monoids and their associated groups. Comm. Math. Helvet.47, 1–14 (1972)Google Scholar
  4. 4.
    May, J. P.: Classifying spaces and fibrations. Mem. Amer. Math. Soc.155 (1975)Google Scholar
  5. 5.
    McDuff, D.: Configuration spaces of positive and negative particles. Topology,14, 91–107 (1975)Google Scholar
  6. 6.
    Quillen, D. G.: On the group completion of a simplicial monoid. Unpublished preprintGoogle Scholar
  7. 7.
    Quillen, D. G.: Higher algebraicK-theory I. In: AlgebaicK-theory 1, 85–147. Lecture Notes in Mathematics341, Berlin-Heidelberg-New York: Springer 1973Google Scholar
  8. 8.
    Segal, G. B.: Classifying spaces and spectral sequences. Publ. Math. I.H.E.S. (Paris)34, 105–112 (1968)Google Scholar
  9. 9.
    Segal, G. B.: Categories and cohomology theories. Topology13, 293–312 (1974)Google Scholar
  10. 10.
    Segal. G.B.: The classifying space for foliations. (To appear)Google Scholar
  11. 11.
    Wagoner, J. B.: Delooping classifying spaces in algebraicK-theory. Topology11, 349–370 (1972)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • D. McDuff
    • 1
  • G. Segal
    • 2
  1. 1.Department of MathematicsUniversity of YorkYorkEngland
  2. 2.St. Catherine's CollegeOxfordUK

Personalised recommendations