Advertisement

Inventiones mathematicae

, Volume 49, Issue 2, pp 121–135 | Cite as

On the holonomic systems of linear differential equations, II

  • Masaki Kashiwara
Article

Keywords

Differential Equation Linear Differential Equation Holonomic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernstein, I.N.: The analytic continuation of generalized functions with respect to a parameter. Functional Anal. Appl.6, 26–40 (1972)Google Scholar
  2. 2.
    Grothendieck, A.: Cohomologie Locale des Faisceaux Cohérents et Théorèmes de Lefschetz Locaux et Globeaux (SGA 2). Amsterdam: North-Holland Publ. Co. 1968Google Scholar
  3. 3.
    Hartshorne, R.: Local Cohomology, Lecture Notes in Math., 41. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  4. 4.
    Kashiwara, M.: An algebraic study of systems of partial differential equations, local theory of differential operators (Master's thesis). Sugakushinkokai (in Japanese), 1970Google Scholar
  5. 5.
    Kashiwara, M.: On the maximally overdetermined system of linear differential equations, I. Publ. R.I.M.S., Kyoto Univ.10, 563–579 (1975)Google Scholar
  6. 6.
    Kashiwara, M.:B-functions and holonomic systems, rationality of roots ofb-functions. Inventiones Math.38, 33–53 (1976)Google Scholar
  7. 7.
    Kashiwara, M., Kawai, T.: On the holonomic systems of micro-differential equations, III. in press (1978)Google Scholar
  8. 8.
    Le Jeune-Jalabert, M., Malgrange, B., Boutet de Monvel: Séminaire “Opérateurs différentiels et pseudo-différentiels”, I, II, III, IV, Université Scientifique et Médical de Grenoble, Laboratoire de Math. Pures Associé au C.N.R.S., 1975–1976Google Scholar
  9. 9.
    Sato, M., Kawai, T., Kashiwara, M.: Microfunctions and pseudodifferential equations, Lecture Notes in Math. Berlin-Heidelberg-New York: Springer287, 265–529 (1973)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Masaki Kashiwara
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations