Inventiones mathematicae

, Volume 34, Issue 3, pp 151–162 | Cite as

A modular construction of unramifiedp-extensions ofQ(μp)

  • Kenneth A. Ribet


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borevich, Z.I., Shafarevich, I.R.: Number theory. New York: Academic Press 1966Google Scholar
  2. 2.
    Carlitz, L.: A generalization of Maillet's determinant and a bound for the first factor of the class number. Proc. A.M.S.12, 256–261 (1961)Google Scholar
  3. 3.
    Carlitz, L., Olson, F.R.: Maillet's determinant. Proc. A.M.S.6, 265–269 (1955)Google Scholar
  4. 4.
    Curtis, C., Reiner, I.: Representation theory of finite groups and associative algebras. New York: Interscience 1962Google Scholar
  5. 5.
    Deligne, P., Rapoport, M.: Les schémas de modules de courbes elliptiques. International Summer School on Modular Functions; Antwerp, 1972. Lecture Notes in Math.349, pp. 143–316. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  6. 6.
    Deligne, P., Serre, J-P.: Formes modulaires de poids 1. Ann. Scient. Ec. Norm. Sup., 4e série,7, 507–530 (1974)Google Scholar
  7. 7.
    Greenberg, R.: A generalization of Kummer's criterion. Inventiones math.21, 247–254 (1973)Google Scholar
  8. 8.
    Herbrand, J.: Sur les classes des corps circulaires. J. Math. Pures et Appliquées, 9e série11, 417–441 (1932)Google Scholar
  9. 9.
    Koike, M.: On the congruences between Eisenstein series and cusp forms. US-Japan Number Theory Seminar; Ann Arbor, 1975, Photo-offset notes.Google Scholar
  10. 10.
    Koike, M.: Congruences between cusp forms of weight one and weight two and a remark on a theorem of Deligne and Serre. International Symposium on Algebraic Number Theory; Kyoto, 1976Google Scholar
  11. 11.
    Leopoldt, H.-W.: Eine Verallgemeinerung der Bernoullischen Zahlen. Abh. Math. Sem. Hamburg22, 131–140 (1958)Google Scholar
  12. 12.
    Li, W.-C.: Newforms and functional equations. Math. Ann.212, 285–315 (1975)Google Scholar
  13. 13.
    Masley, J.M., Montgomery, H.L.: Cyclotomic fields with unique factorization. Preprint.Google Scholar
  14. 14.
    Mazur, B.: Modular curves and the Eisenstein ideal. In preparation.Google Scholar
  15. 15.
    Raynaud, M.: Schémas en groupes de type (p, ...,p). Bull. Soc. Math. France102, 241–280 (1974)Google Scholar
  16. 16.
    Serre, J-P: Une interpretation des congruences relatives à la fonction τ de Ramanujan. Sém. Delange-Pisot-Poitou 1967–68, ex. 14Google Scholar
  17. 17.
    Serre, J-P: Abelianl-adic representations and elliptic curves. New York: Benjamin 1968Google Scholar
  18. 18.
    Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Publ. Math. Soc. Japan, no 11, Tokyo-Princeton 1971Google Scholar
  19. 19.
    Shimura, G.: Class fields over real quadratic fields and Hecke operators. Ann. of Math.95, 130–190 (1972)Google Scholar
  20. 20.
    Tate, J.: Global class field theory. In: Algebraic number theory. Washington: Thompson 1967Google Scholar
  21. 21.
    Yamauchi, M.: On the fields generated by certain points of finite order on Shimura's elliptic curves. J. Math. Kyoto Univ.14, 243–255 (1974)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Kenneth A. Ribet
    • 1
  1. 1.PrincetonUSA

Personalised recommendations