Inventiones mathematicae

, Volume 39, Issue 3, pp 223–251

On the conjecture of Birch and Swinnerton-Dyer

  • J. Coates
  • A. Wiles
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artin, E., Tate, J.: Class field theory. New York: Benjamin 1967Google Scholar
  2. 2.
    Birch, B., Swinnerton-Dyer, P.: Notes on elliptic curves II. J. Reine Angew. Math.218, 79–108 (1965)Google Scholar
  3. 3.
    Coates, J., Wiles, A.: Kummer's criterion for Hurwitz numbers, to appear in Proceedings of the International Conference on Algebraic Number Theory held in Kyoto, Japan, 1976Google Scholar
  4. 4.
    Damerell, R.:L-functions of elliptic curves with complex multiplication I. Acta Arith.17, 287–301 (1970)Google Scholar
  5. 5.
    Deuring, D.: Die Zetafunktionen einer algebraischen Kurve vom Geschlechter Eins, I, II, III, IV. Nachr. Akad. Wiss. Göttingen, 85–94 (1953); 13–42 (1955); 37–76 (1956); 55–80 (1957)Google Scholar
  6. 6.
    Fröhlich, A.: Formal Groups. Lecture Notes in Math.74. Berlin-Heidelberg-New York: Springer 1968Google Scholar
  7. 7.
    Hasse, H.: Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Teil II, 2nd ed. Würzburg-Wien: Physica 1965Google Scholar
  8. 8.
    Iwasawa, K.: On some modules in the theory of cyclotomic fields. J. Math. Soc. Japan,16, 42–82 (1964)Google Scholar
  9. 9.
    Lubin, J.: One parameter formal Lie groups overp-adic integer rings. Ann. of Math.80, 464–484 (1964)Google Scholar
  10. 10.
    Lubin, J., Tate, J.: Formal complex multiplication in local fields. Ann. Math.81, 380–387 (1965)Google Scholar
  11. 11.
    Mazur, B.: Rational points of abelian varieties with values in towers of number fields. Inventiones math.18, 183–266 (1972)Google Scholar
  12. 12.
    Robert, G.: Unités elliptiques. Bull. Soc. Math. France, Mémoire36, 1973Google Scholar
  13. 13.
    Robert, G.: Nombres de Hurwitz et Unités elliptiques. To appearGoogle Scholar
  14. 14.
    Sah, H.: Automorphisms of finite groups. J. Algebra10, 47–68 (1968)Google Scholar
  15. 15.
    Serre, J.P., Tate, J.: Good reduction of abelian varieties. Ann. Math.88, 492–517 (1968)Google Scholar
  16. 16.
    Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Pub. Math. Soc. Japan,11, 1971Google Scholar
  17. 17.
    Tate, J.: Algorithm for determining the type of a singular fiber in an elliptic pencil. In: Modular functions of one variable IV. Lecture Notes in Math.476. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  18. 18.
    Wiles, A.: Higher explicit reciprocity laws. To appearGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • J. Coates
    • 1
  • A. Wiles
    • 2
  1. 1.Department of Mathematics, Institute of Advanced StudiesAustralian National UniversityCanberraAustralia
  2. 2.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations