Advertisement

Inventiones mathematicae

, Volume 3, Issue 4, pp 334–347 | Cite as

Fields of tangentk-Planes on manifolds

  • Emery Thomas
Article

Keywords

Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Anderson, D.: A new cohomology theory. Thesis, Univ. of Calif. (Berkeley) 1964.Google Scholar
  2. [2]
    Borel, A.: Sur la cohomologie des espaces fibrés principaux .... Annals of Math.47, 115–207 (1963).Google Scholar
  3. [3]
    Chevalley, C.: Theory of Lie groups. Princeton University Press 1946.Google Scholar
  4. [4]
    Eckmann, B., andP. Hilton: Operators and cooperators in homotopy theory. Math. Ann.141, 1–21 (1960).Google Scholar
  5. [5]
    Haefliger, A.: Variétés feuilletées. Ann. Scuola Norm. Sup. Pisa (3),16, 367–397 (1962).Google Scholar
  6. [6]
    Hsiang, W. C.: Higher obstructions to sectioning a special type of fiber bundle. Trans. Amer. Soc.110, 393–412 (1964).Google Scholar
  7. [7]
    Kervaire, M.: Courbure intégrale generalisée et homotopie. Math. Annalen131, 219–252 (1956).Google Scholar
  8. [8]
    Lickorish, W. B. R.: A foliation for 3-manifolds. Ann. of Math. (2)92, 414–420 (1965).Google Scholar
  9. [9]
    Mahowald, M.: On obstruction theory in orientable fiber bundles. Trans. Amer. Math. Soc.110, 315–349 (1964).Google Scholar
  10. [10]
    Massey, W.: On the Stiefel-Whitney classes of a manifold. Amer. J. Math.92, 92–102 (1960).Google Scholar
  11. [11]
    —, andF. Peterson: The cohomology structure of certain fiber spaces: I. Topology4, 47–66 (1964).Google Scholar
  12. [12]
    Meyer, J. P.: The characterization of Moore-Postnikov invariants. Bol. Soc. Mat. Mex.1963, 92–94.Google Scholar
  13. [13]
    Paechter, G.: The groupsπ r(V n,m), I. Quart. J. Math. Oxford Ser. (2),7, 249–268 (1956).Google Scholar
  14. [14]
    Reeb, G.: Variétés feuiletées, Actualités Sci. et Indust., No. 1183. Paris: Hermann 1952.Google Scholar
  15. [15]
    Spanier, E.: Algebraic topology. New York: McGraw-Hill 1966.Google Scholar
  16. [16]
    Steenrod, N.: The topology of fiber bundles. Princeton Univ. Press 1951.Google Scholar
  17. [17]
    Thomas, E.: On the cohomology groups of the classifying space for the stable spinor group. Bol. Soc. Mat. Mex.1962, 57–69.Google Scholar
  18. [18]
    —: Seminar on fiber spaces. Lecture Notes in Math. No. 13. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  19. [19]
    —: Postnikov Invariants and higher order cohomology operations. Annals of Math.85, 184–217 (1967).Google Scholar
  20. [20]
    Thomas, E.: The index of a tangent 2-field. Comment. Math. Helv. (to appear).Google Scholar
  21. [21]
    Thomas, E.: Fields of tangent 2-planes on even-dimensional manifolds (to appear).Google Scholar
  22. [22]
    Thomas, E.: On the existence of immersions and submersion (to appear).Google Scholar
  23. [23]
    Wu, W.: Lesi-carrés dans une variété grassmannienne. C. R. Acad. Sci. (Paris)230, 918–920 (1950).Google Scholar
  24. [24]
    —: Classes caracteristique eti-carrés d'une variété. C. R. Acad. Sci. (Paris)230, 508–511 (1950).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • Emery Thomas
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeley

Personalised recommendations