Inventiones mathematicae

, Volume 3, Issue 4, pp 334–347 | Cite as

Fields of tangentk-Planes on manifolds

  • Emery Thomas
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Anderson, D.: A new cohomology theory. Thesis, Univ. of Calif. (Berkeley) 1964.Google Scholar
  2. [2]
    Borel, A.: Sur la cohomologie des espaces fibrés principaux .... Annals of Math.47, 115–207 (1963).Google Scholar
  3. [3]
    Chevalley, C.: Theory of Lie groups. Princeton University Press 1946.Google Scholar
  4. [4]
    Eckmann, B., andP. Hilton: Operators and cooperators in homotopy theory. Math. Ann.141, 1–21 (1960).Google Scholar
  5. [5]
    Haefliger, A.: Variétés feuilletées. Ann. Scuola Norm. Sup. Pisa (3),16, 367–397 (1962).Google Scholar
  6. [6]
    Hsiang, W. C.: Higher obstructions to sectioning a special type of fiber bundle. Trans. Amer. Soc.110, 393–412 (1964).Google Scholar
  7. [7]
    Kervaire, M.: Courbure intégrale generalisée et homotopie. Math. Annalen131, 219–252 (1956).Google Scholar
  8. [8]
    Lickorish, W. B. R.: A foliation for 3-manifolds. Ann. of Math. (2)92, 414–420 (1965).Google Scholar
  9. [9]
    Mahowald, M.: On obstruction theory in orientable fiber bundles. Trans. Amer. Math. Soc.110, 315–349 (1964).Google Scholar
  10. [10]
    Massey, W.: On the Stiefel-Whitney classes of a manifold. Amer. J. Math.92, 92–102 (1960).Google Scholar
  11. [11]
    —, andF. Peterson: The cohomology structure of certain fiber spaces: I. Topology4, 47–66 (1964).Google Scholar
  12. [12]
    Meyer, J. P.: The characterization of Moore-Postnikov invariants. Bol. Soc. Mat. Mex.1963, 92–94.Google Scholar
  13. [13]
    Paechter, G.: The groupsπ r(V n,m), I. Quart. J. Math. Oxford Ser. (2),7, 249–268 (1956).Google Scholar
  14. [14]
    Reeb, G.: Variétés feuiletées, Actualités Sci. et Indust., No. 1183. Paris: Hermann 1952.Google Scholar
  15. [15]
    Spanier, E.: Algebraic topology. New York: McGraw-Hill 1966.Google Scholar
  16. [16]
    Steenrod, N.: The topology of fiber bundles. Princeton Univ. Press 1951.Google Scholar
  17. [17]
    Thomas, E.: On the cohomology groups of the classifying space for the stable spinor group. Bol. Soc. Mat. Mex.1962, 57–69.Google Scholar
  18. [18]
    —: Seminar on fiber spaces. Lecture Notes in Math. No. 13. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  19. [19]
    —: Postnikov Invariants and higher order cohomology operations. Annals of Math.85, 184–217 (1967).Google Scholar
  20. [20]
    Thomas, E.: The index of a tangent 2-field. Comment. Math. Helv. (to appear).Google Scholar
  21. [21]
    Thomas, E.: Fields of tangent 2-planes on even-dimensional manifolds (to appear).Google Scholar
  22. [22]
    Thomas, E.: On the existence of immersions and submersion (to appear).Google Scholar
  23. [23]
    Wu, W.: Lesi-carrés dans une variété grassmannienne. C. R. Acad. Sci. (Paris)230, 918–920 (1950).Google Scholar
  24. [24]
    —: Classes caracteristique eti-carrés d'une variété. C. R. Acad. Sci. (Paris)230, 508–511 (1950).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • Emery Thomas
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeley

Personalised recommendations