Inventiones mathematicae

, Volume 33, Issue 2, pp 69–170 | Cite as

A splitting theorem for manifolds

  • Sylvain E. Cappell
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BHS. Bass, H., Heller, A., Swan, R. G.: The Whitehead group of a polynomial extension. Publ. Math. I.H.E.S.22, 61–79 (1964)Google Scholar
  2. B1. Browder, W.: Embedding 1-connected manifolds. Bull. Amer. Math. Soc.72, 225–231 (1966)Google Scholar
  3. B2. Browder, W.: Manifolds with μ1 = Z. Bull. Amer. Math. Soc.72, 238–244 (1966)Google Scholar
  4. B3. Browder, W.: Surgery on simply-connected manifolds. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  5. B4. Bak, A.: Odd dimensional Wall groups of groups of odd order are zero. To appearGoogle Scholar
  6. BL. Browder, W., Levine, J.: Fibering manifolds over a circle. Comm. Math. Helv.40, 153–160 (1966)Google Scholar
  7. BLL. Browder, W., Levine, J., Livesay, G. R.: Finding a boundary for an open manifolds. Amer. J. Math.87, 1017–1028 (1965)Google Scholar
  8. C1. Cappell, S. E.: A splitting theorem for manifolds and surgery groups. Bull. Amer. Math. Soc.77, 281–286 (1971)Google Scholar
  9. C2. Cappell, S. E.: Superspinning and knot complements. Topology of manifolds (Proceedings of the 1969 Georgia Conference), Markham Press, pp. 358–383, 1971Google Scholar
  10. C3. Cappell, S.: Mayer-Vietoris sequences in HermitianK-theory. Proc. BattelleK-theory Conf., Lecture Notes in Math.343, pp. 478–512. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  11. C4. Cappell, S.: On homotopy invariance of higher signatures. Inventiones math33, 171–179 (1976)Google Scholar
  12. C5. Cappell, S.: Splitting obstructions for Hermitian forms and manifolds with Z2 ⊂ μ1. Bull. Amer. Math. Soc.79, 909–914 (1973)Google Scholar
  13. C6. Cappell, S.: On connected sums of manifolds. Topology13, 395–400 (1974)Google Scholar
  14. C7. Cappell, S.: Unitary nilpotent groups and HermitianK-theory. Bull. Amer. Math. Soc.80, 1117–1122 (1974)Google Scholar
  15. C8. Cappell, S.: Manifolds with fundamental group a generalized free product. Bull. Amer. Math. Soc.80, 1193–1198 (1974)Google Scholar
  16. C9. Cappell, S.: Decompositions of Manifolds. To appearGoogle Scholar
  17. CS 1. Cappell, S., Shaneson, J. L.: Four-dimensional surgery and applications. Comm. Math. Helv.47, 500–528 (1972)Google Scholar
  18. CS 2. Cappell, S., Shaneson, J. L.: The codimension two placement problem and homology equivalent manifolds. To appear in Ann. of Math.Google Scholar
  19. CF. Conner, P. E., Floyd, E. E.: Differentiable periodic maps. Berlin-Göttingen-Heidelberg: Springer 1964Google Scholar
  20. F. Farrell, F. T.: The obstruction to fibering a manifold over a circle. Indiana Univ. Math. J.21, 315–346 (1971)Google Scholar
  21. FH1. Farrell, F. T., Hsiang, W. C.: Manifolds with μ1 G ×α T. Amer. J. Math.95, 813–848 (1973)Google Scholar
  22. FH2. Farrell, F. T., Hsiang, W. C.: A formula forK 1 R[T]. Proceedings of Symposia in Pure MathematicsXVII, 172–218 (1970)Google Scholar
  23. KM. Kervaire, M. A., Milnor, J. W.: Groups of homotopy spheres 1. Ann. of Math.77, 504–537 (1963)Google Scholar
  24. KS. Kirby, R. C., Siebenmann, L. C.: On the triangulation of manifolds and the Hauptvermutung. Buul. Amer. Math. Soc.75, 742–749 (1969) (see also Not. Amer Math. Soc.16, 848 (1969))Google Scholar
  25. KWS. Kwun, K. W., Szczarba, R.: Product and sum theorems for Whitehead torsion. Ann. of Math.82, 183–190 (1965)Google Scholar
  26. K 1. Kurosh, A. G.: The theory of groups. Chelsea: New York 1956Google Scholar
  27. K 2. Kervaire, M. A.: Le théorème de Barden-Mazur-Stallings. Comm. Math. Helv.40, 31–42 (1965)Google Scholar
  28. L 1. Lee, R.: Splitting a manifold into two parts. Mimeographed Notes, Inst. Advanced Study, 1969Google Scholar
  29. L 2. Lees, J.: Immersions and surgeries of topological manifolds. Bull. Amer. Math. Soc.75, 529–534 (1969)Google Scholar
  30. M 1. Milnor, J. W.: Whitehead torsion. Bull. Amer. Math. Soc.72, 358–426 (1966)Google Scholar
  31. M 2. Milnor, J. W.: Lectures on theh-cobordism theorem. Notes by L. Siebenmann and J. Sondow, Princeton, 1965Google Scholar
  32. N. Novikov, S. P.: On manifolds with free abelian fundamental group and their application (Russian). Izv. Akad. Nauk SSSR Ser. Mat.30, 207–246 (1966)Google Scholar
  33. R. Ranicki, A.: Algebraic L-Theory, II: Laurent Extensios Proc. London Math. Soc. XXVII. pp. 126–158 (1973)Google Scholar
  34. S 1. Siebenmann, L. C.: The obstruction to finding the boundary of an open manifold. Princeton Univ. Thesis 1965Google Scholar
  35. S 2. Shaneson, J. L.: Wall's surgery obstruction groups forZ×G. Ann of Math.90, 296–334 (1969)Google Scholar
  36. S 3. Shaneson, J. L.: Non-simply connected surgery and some results in low dimensional topology. Comm. Math. Helv.45, (1970) 333–352 (1970)Google Scholar
  37. Sp. Spanier, E. H.: Algebraic topology. New York: McGraw Hill 1966Google Scholar
  38. St. Stallings, J.: Whitehead torsion of free products. Ann. of Math82, pp. 354–363 (1965)Google Scholar
  39. St 1. Stallings, J.: On fibering certain 3-manifolds. Topology of 3-manifolds and related topics, (Proc. Georgia Conference 1961) pp. 95–100, Prentice-Hall, N.J., 1962Google Scholar
  40. W 1. Waldhausen, F.: Whitehead groups of generalized free products. Mimeographed preprintGoogle Scholar
  41. W 2. Wall, C. T. C.: Surgery on compact manifolds. New York-London: Academic Press 1970Google Scholar
  42. W 3. Wall, C. T. C.: Some L groups of finite groups. Bull. Amer. Math. Soc.79, 526–529 (1973)Google Scholar
  43. Z. Zeeman, E. C.: Unknotting combinatorial ball. Ann. of Math.78, 501–526 (1963)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Sylvain E. Cappell
    • 1
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations