Inventiones mathematicae

, Volume 58, Issue 1, pp 37–64 | Cite as

Induced cuspidal representations and generalised Hecke rings

  • R. B. Howlett
  • G. I. Lehrer


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benson, C.T., Curtis, C.W.: On the degrees and rationality of certain characters of finite Chevalley groups. Trans. Amer. Math. Soc.165, 251–274 (1972)Google Scholar
  2. 2.
    Borel, A., Tits, J.: Groupes réductifs. Publ. Math. I.H.E.S.27, 55–152 (1965)Google Scholar
  3. 3.
    Bourbaki, N.: Groupes et algèbres de Lie, Chap. IV, V, VI. Paris: Hermann 1968Google Scholar
  4. 4.
    Curtis, C.W., Fossum, T.V.: On centralizer rings and characters of representations of finite groups. Math. Zeit.107, 402–406 (1968)Google Scholar
  5. 5.
    Curtis, C.W., Iwahori, N., Kilmoyer, R.: Hecke algebras and characters of parabolic type of finite groups with (B, N) pairs. Publ. Math. I.H.E.S.40, 81–116 (1972)Google Scholar
  6. 6.
    Curtis, C.W., Reiner, I.: Representation theory of finite groups and associative algebras. Interscience 1962Google Scholar
  7. 7.
    Deligne, P., Lusztig, G.: Representations of reductive groups over finite fields. Ann. of Math.103, 103–161 (1976)Google Scholar
  8. 8.
    Green, J.A.: The characters of the finite general linear groups. Trans. Amer. Math. Soc.80, 402–447 (1955)Google Scholar
  9. 9.
    Harish-Chandra: Eisenstein series over finite fields, in functional analysis and related fields, Stone anniversary volume (F.E. Browder, ed.), pp. 76–88. Berlin Heidelberg New York: Springer-Verlag 1970Google Scholar
  10. 10.
    Hoefsmit, P.: Representations of Hecke algebras of finite groups with (B, N) pairs of classical type. Ph.D. Dissertation, University of British Columbia, Vancouver, B.C., 1974Google Scholar
  11. 11.
    Howlett, R.: Normalizers of parabolic subgroups of reflection groups. Proc. Lond. Math. Soc. in press (1980)Google Scholar
  12. 12.
    Howlett, R., Kilmoyer, R.W.: Principal series representations of finite groups withBN-pairs. In press (1980)Google Scholar
  13. 13.
    Kilmoyer, R.W.: Principal series representations of finite Chevalley groups. J. of Alg.51, 300–319 (1978)Google Scholar
  14. 14.
    Knapp, A.W.: Determination of intertwining operators. In: Proc. Symp. Pure Math. A.M.S. XXVI, 263–268 (1973)Google Scholar
  15. 15.
    Knapp, A.W.: Weyl group of a cuspidal parabolic. Ann. Scient. Ec. Norm. Sup. 275–294 (1975)Google Scholar
  16. 16.
    Knapp, A.W., Zuckermann: Normalizing factors, tempered representations andL-groups. In: Proc. Symp. Pure Math. XXXII Part i, (1979)Google Scholar
  17. 17.
    Lehrer, G.I.: The characters of the finite special linear groups. J. of Alg.26, 564–583 (1973)Google Scholar
  18. 18.
    Lehrer, G.I.: Adjoint groups regular unipotent elements and discrete series characters. Trans. Amer. Math. Soc.214, 249–260 (1975)Google Scholar
  19. 19.
    Lusztig, G.: Coxeter orbits and eigenspaces of Frobenius. Inv. Math.38, 101–159 (1976)Google Scholar
  20. 20.
    Lusztig, G.: Irreducible representations of finite classical groups. Inv. Math.43, 125–175 (1977)Google Scholar
  21. 21.
    Richen, F.: Modular representations of split (B, N) pairs. Trans. Amer. Math. Soc.140, 435–460 (1969)Google Scholar
  22. 22.
    Springer, T.A.: Cusp forms for finite groups, in Lecture Notes in Mathematics 131, pp. 97–120. Springer-Verlag (1968)Google Scholar
  23. 23.
    Springer, T.A.: On the characters of certain finite groups. In: “Lie groups and their representations”, Budapest Summer School on Group Representations (I.M. Geldfand, ed.), pp. 621–644 (1971)Google Scholar
  24. 24.
    Springer, T.A.: Caractères de groupes de Chevalley finis, sém. Bourbaki no. 429. In: Springer Lecture Notes in Mathematics 383, 227 (1974)Google Scholar
  25. 25.
    Steinberg, R.: Lectures on Chevalley groups. Yale Lecture Notes, New Haven, Conn. 1967Google Scholar
  26. 26.
    Tits, J.: Normalisateurs de tores, I. Groupes de Coxeter étendus. J. of Alg.4, 96–116 (1966)Google Scholar
  27. 27.
    Yokonuma, T.: Sur le commutant d'une représentation d'un group de Chevalley fini II. J. Fac. Sci. Univ. Tokyo, Sect I16, 65–81 (1969)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • R. B. Howlett
    • 1
  • G. I. Lehrer
    • 2
  1. 1.Mathematics DepartmentUniversity of Western AustraliaNedlands
  2. 2.Mathematics InstituteUniversity of WarwickCoventryEngland

Personalised recommendations