Inventiones mathematicae

, Volume 58, Issue 1, pp 1–35

Modular curves and the class group of Q(ςp)

  • Andrew Wiles
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cassels, J.W.S., Fröhlich, A.: Algebraic number theory. London-New York: Academic Press 1967Google Scholar
  2. 2.
    Coates, J.: “p-adicL-functions and Iwasawa's theory,” in Algebraic Number Fields, edited by Fröhlich, A., New York: Academic Press 1977Google Scholar
  3. 3.
    Coates, J., Lichtenbaum, S.: Onl-adic zeta functions. Ann. of Math.98, 498–550 (1973)Google Scholar
  4. 4.
    Deligne, P.: Formes modulaires et représentationsl-adiques, Séminaire Bourbaki 68/69 no. 355, Lecture Notes in Mathematics 179, 136–172, Berlin-Heidelberg-New York: Springer 1971Google Scholar
  5. 5.
    Deligne, P., Mumford, D.: The irreducibility of the space of curves of given genus. Publications Mathématiques I.H.E.S.,36, 75–109 (1969)Google Scholar
  6. 6.
    Deligne, P., Rapoport, M.: Schémas de modules de courbes elliptiques, Lecture Notes in Mathematics,349. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  7. 7.
    Gras, G.: Classes d'idéaux des corps abéliens et nombres de Bernoulli généralisés. Ann. Inst. Fourier,27, 1–66 (1977)Google Scholar
  8. 8.
    Greenberg, R.: Onp-adicL-functions and cyclotomic fields. Nagoya Math. J.,56, 61–77 (1974)Google Scholar
  9. 9.
    Greenberg, R.: Onp-adicL-functions and cyclotomic fields II, Nagoya Math. J.,67, 139–158 (1977)Google Scholar
  10. 10.
    Hartshorne, R.: Residues and duality, Lecture Notes in Mathematics,20, Berlin-Heidelberg-New York: Springer 1970Google Scholar
  11. 11.
    Hartshorne, R.: Algebraic Geometry. New York-Heidelberg-Berlin: Springer 1977Google Scholar
  12. 12.
    Iwasawa, K.: On some modules in the theory of cyclotomic fields. J. Math. Soc. Japan,16, 42–82 (1964)Google Scholar
  13. 13.
    Iwasawa, K.: OnZ 1-extensions of algebraic number fields. Ann. of Math.,98, 246–326 (1973)Google Scholar
  14. 14.
    Kubert, D., Lang, S.: Thep-primary component of the cuspidal divisor class group on the modular curveX(p). Math. Ann.234, 25–44 (1978)Google Scholar
  15. 15.
    Lang, S.: Introduction to modular forms. New York-Heidelberg-Berlin: Springer 1976Google Scholar
  16. 16.
    Lang, S.: Cyclotomic fields. New York-Heidelberg-Berlin: Springer 1978Google Scholar
  17. 17.
    Mazur, B.: Modular curves and the Eisenstein ideal. Publications Mathématiques I.H.E.S.,47 (1978)Google Scholar
  18. 18.
    Mazur, B.: Rational isogenies of prime degree. Inv. Math.44, 129–162 (1978)Google Scholar
  19. 19.
    Ogg, A.: Rational points on certain elliptic modular curves. Proc. Symp. Pure Math.24, 221–231 (1973)Google Scholar
  20. 20.
    Oort, F., Tate, J.: Group schemes of prime order. Ann. Scient. Ec. Norm. Sup., série4, 3, 1–21 (1970)Google Scholar
  21. 21.
    Ribet, K.: A modular construction of unramifiedp-extensions of Q(μp). Inv. Math.,34, 151–162 (1976)Google Scholar
  22. 22.
    Serre, J.-P.: Sur la topologie des variétés algébriques en caractéristique p. Symp. Int. de Top. Alg., Mexico, 1958Google Scholar
  23. 23.
    Shimura, G.: Introduction to the arithmetic theory of automorphic forms. Publ. Math. Soc. Japan,11, Tokyo-Princeton (1971)Google Scholar
  24. 23a.
    E.G.A. III: Eléments de géométrie algébrique, by A. Grothendieck and J. Dieudonné, Publications Mathématiques I.H.E.S.,11 (1961)Google Scholar
  25. 23b.
    E.G.A. IV: Eléments de géométrie algébrique, by A. Grothendieck and J. Dieudonné, Publications Mathématiques I.H.E.S.,24 (1965)Google Scholar
  26. 23c.
    S.G.A. 5: Séminaire de géométrie algébrique du Bois-Marie, Lecture Notes in Mathematics589, Berlin-Heidelberg-New York: Springer 1977Google Scholar
  27. 23d.
    S.G.A. 7: Séminaire de géométrie algébrique du Bois-Marie, Lecture Notes in Mathematics288, Berlin-Heidelberg-New York: Springer 1972Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Andrew Wiles
    • 1
  1. 1.Dept. of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations