Acta Neurochirurgica

, Volume 118, Issue 3–4, pp 130–136 | Cite as

A primate model for acute and late cerebral vasospasm: Angiographic findings

  • T. J. Delgado-Zygmunt
  • M. A. -R. Arbab
  • Y. Shiokawa
  • N. -A. Svendgaard
Experimental Research

Summary

A subarachnoid haemorrhage (SAH) in the squirrel monkey was produced by injection of blood via a permanently implanted catheter connected to the cisterna magna and a cannula stereotactically inserted into the interpeduncular cistern. Repeated angiographic examinations of the vertebro-basilar and right internal carotid arteries revealed a biphasic vasospasm with a maximal acute spasm at ten minutes and maximal late spasm at six days after blood injection. The present study has shown that a reproducible biphasic vasospasm can be produced in the squirrel monkey and evaluated by repeated angiographic examinations. The model is suitable in the study of basic mechanisms underlying vasospasm in a primate and, due to the size of the animal, autoradiographic evaluation of the cerebral blood flow and metabolism can be performed at an acceptable cost.

Keywords

Angiography squirrel monkey subarachnoid haemorrhage vasospasm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergvall U, Galera R (1969) Time relationship between subarachnoid haemorrhage, arterial spasm, changes in cerebral circulation and posthaemorrhagic hydrocephalus. Acta Radiol (Diagn) 9: 229–237Google Scholar
  2. 2.
    Brawley BW, Strandness DE Jr, Kelly WA (1968) The biphasic response of cerebral vasospasm in experimental subarachnoid hemorrhage, J Neurosurg 28: 1–8PubMedGoogle Scholar
  3. 3.
    Brizzee KR, Dunlap WP (1987) Local brainstem glucose utilization in the squirrel monkey. Brain Res Bull 19: 191–194PubMedGoogle Scholar
  4. 4.
    Delgado TJ, Brismar J, Svendgaard NAa (1985) Subarachnoid haemorrhage in the rat: angiography and fluorescence microscopy of the major cerebral arteries. Stroke 16(4): 595–602PubMedGoogle Scholar
  5. 5.
    Delgado TJ, Arbab MA-R, Warberg J,et al (1988) The role of vasopressin in acute cerebral vasospasm. Effects on spasm of a vasopressin antagonist or vasopresin antiserum. J Neurosurg 68: 266–273PubMedGoogle Scholar
  6. 6.
    Delgado-Zygmunt TJ, Arbab MA-R, Edvinsson L, Jansen I, Svendgaard NAa (1990) Prevention of cerebral vasospasm in the rat by depeltion or inhibition of substance P in conducting vessels. J Neurosurg 72: 917–925PubMedGoogle Scholar
  7. 7.
    duBoulay G, Symon L, Shah S,et al (1972) Cerebral arterial reactivity and spasm after subarachnoid haemorrhage. Proc Royal Soc Med London 65: 80–82Google Scholar
  8. 8.
    Ecker A, Riemenschneider PA (1951) Arteriographic demonstration of spasm of the intracranial arteries: with special reference to saccular arterial aneurisms. J Neurosurg 8: 660–667PubMedGoogle Scholar
  9. 9.
    Espinosa F, Weir B, Boisvert D,et al (1982) Chronic cerebral vasospasm after large subarachnoid haemorrhage in monkeys. J Neurosurg 57: 224–232PubMedGoogle Scholar
  10. 10.
    Espinosa F, Weir B, Overton T,et al (1984) A randomized placebo-controlled double-blind trial of nimodipine after SAH in monkeys. Part 1: clinical and radiological findings. J Neurosurg 60: 1167–1175PubMedGoogle Scholar
  11. 11.
    Fisher CM, Kistler JP, Davis JM (1980) Relation of cerebral vasospasm to subarachnoid haemorrhage visualized by computerized tomographic scanning. Neurosurgery 6: 1–9PubMedGoogle Scholar
  12. 12.
    Frazee JG (1982) A primate model of chronic cerebral vasospasm. Stroke 13(5): 612–614PubMedGoogle Scholar
  13. 13.
    Frazee JG, Bevan JA, Bevan RD,et al (1985) Effect of diltiazem on experimental chronic cerebral vasoconstriction in the primate. J Neurosurg 62: 912–917PubMedGoogle Scholar
  14. 14.
    Gabrielsen TO, Greiz T (1970) Normal size of the internal carotid, middle cerebral and anterior cerebral arteries. Acta Radiol (Diagn) 10: 1–10Google Scholar
  15. 15.
    Inagawa T, Kamiya K, Matsuda Y (1991) Effect of continuous cisternal drainage on cerebral vasospasm. Acta Neurochir (Wien) 112: 28–36Google Scholar
  16. 16.
    Kagström E, Greitz T, Hanson J,et al (1966) Changes in cerebral blood flow after subarachnoid haemorrhage. Excerpta Med Int Congr Ser 110: 629–633Google Scholar
  17. 17.
    Kagström E, Nilsson PE, Svendgaard NAa (1969) Clinical and experimental spasm of the cerebral vessels. Excerpta Med Int Congr Ser 193: 60Google Scholar
  18. 18.
    Kuwayama A, Zervas NT, Belson R,et al (1972) A model for experimental cerebral arterial spasm. Stroke 3. 49–56PubMedGoogle Scholar
  19. 19.
    Mizukami M, Takemae T, Tazawa T,et al (1980) Value of computed tomography in the prediction of cerebral vasospasm after aneurysm rupture. Neurosurgery 7: 583–586PubMedGoogle Scholar
  20. 20.
    Nosko M, Weir BKA, Lunt A,et al (1987) Effect of clot removal at 24 hours on chronic vasospasm after SAH in the primate model. J Neurosurg 66: 416–422PubMedGoogle Scholar
  21. 21.
    Peerless SJ, Fox AJ, Komatsu S,et al (1982) Angiographic study of vasospasm following subarachnoid haemorrhage in monkeys. Stroke 13(4): 473–479PubMedGoogle Scholar
  22. 22.
    Robertson EG (1949) Cerebral lesions due to intracranial aneurysms. Brain 72: 150–185Google Scholar
  23. 23.
    Sahlin C, Brismar J, Delgado T,et al (1987) Cerebrovascular and metabolic changes during the delayed vasospasm following experimental subarachnoid haemorrhage in baboons, and treatment with a calcium antagonist. Brain Res 403: 313–322PubMedGoogle Scholar
  24. 24.
    Simeone FA, Ryan KG, Cotter JR (1968) Prolonged experimental cerebral vasospasm. J Neurosurg 29: 357–366PubMedGoogle Scholar
  25. 25.
    Simeone FA, Trepper PJ, Brown DJ (1972) Cerebral blood flow evaluation of prolonged experimental vasospasm. J Neurosurg 37: 302–311PubMedGoogle Scholar
  26. 26.
    Suzuki J, Komatsu S, Sato T (1980) Correlation between CT findings and subsequent development of cerebral infarction due to vasospasm in subarachnoid haemorrhage. Acta Neurochir (Wien) 55: 63–70Google Scholar
  27. 27.
    Svendgaard N-A, Brismar J, Delgado T,et al (1983) Late cerebral arterial spasm: the cerebrovascular response to hypercapnia, induced hypertension and the effect of nimodipine on blood flow autoregulation in experimental subarachnoid haemorrhage in primates. Gen Pharmac 14: 167–172Google Scholar
  28. 28.
    Svendgaard N-A, Brismar J, Delgado TJ,et al (1985 a) The effect on the development of cerebral vasospasm in the rat of lesioning of the peripheral and central catecholamine systems. Neurol Res 7: 30–34PubMedGoogle Scholar
  29. 29.
    Svendgaard N-A, Brismar J, Delgado TJ,et al (1985 b) Subarachnoid haemorrhage in the rat: effect on the development of vasospasm of selective lesions of the catecholamine systems in the lower brainstem. Stroke 16: 602–608PubMedGoogle Scholar
  30. 30.
    Svendgaard N-A, Delgado TJ, Brun A (1986) Effect of selective lesions in the hypothalamic-pituitary region on the development of cerebral vasospasm following an experimental subarachnoid haemorrhage in the rat. J Cereb Blood Flow Metabol 6: 650–657Google Scholar
  31. 31.
    Svendgaard N-A, Arbab MA-R, Delgado TJ,et al (1987) Effect of selective lesions of medullary catecholamine nuclei on experimental cerebral vasospasm in the rat. J Cereb Blood Flow Metabol 7: 21–28Google Scholar
  32. 32.
    Weir B, Grace M, Hansen J,et al (1978) Time course of vasospasm in man. J Neurosurg 48: 173–178PubMedGoogle Scholar
  33. 33.
    Yaşargil MG (1984) Microneurosurgery, Vol 1. Thieme, Stuttgart, pp 5–53Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • T. J. Delgado-Zygmunt
    • 1
  • M. A. -R. Arbab
    • 1
  • Y. Shiokawa
    • 2
  • N. -A. Svendgaard
    • 2
  1. 1.Neurosurgical Research DepartmentUniversity HospitalLundSweden
  2. 2.Neurosurgical DepartmentKarolinska SjukhusetStockholmSweden

Personalised recommendations