Numerische Mathematik

, Volume 52, Issue 1, pp 1–16 | Cite as

Extraneous fixed points, basin boundaries and chaotic dynamics for Schröder and König rational iteration functions

  • Edward R. Vrscay
  • William J. Gilbert
Article

Summary

The Schröder and König iteration schemes to find the zeros of a (polynomial) functiong(z) represent generalizations of Newton's method. In both schemes, iteration functionsf m (z) are constructed so that sequencesz n+1 =f m (z n ) converge locally to a rootz* ofg(z) asO(|z n z*|m). It is well known that attractive cycles, other than the zerosz*, may exist for Newton's method (m=2). Asm increases, the iteration functions add extraneous fixed points and cycles. Whether attractive or repulsive, they affect the Julia set basin boundaries. The König functionsK m (z) appear to minimize such perturbations. In the case of two roots, e.g.g(z)=z2−1, Cayley's classical result for the basins of attraction of Newton's method is extended for allK m (z). The existence of chaotic {z n } sequences is also demonstrated for these iteration methods.

Subject classifications

AMS(MOS): 30D05, 30-04, 65E05, 65H05 CR: G.1.5 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlfors, L.: Complex analysis (3rd ed.) New York: McGraw-Hill 1979Google Scholar
  2. 2.
    Barna, B.: Über die Divergenzpunkte des Newtonschen Verfahrens zur Bestimmung von Wurzeln algebraischer Gleichungen II. Publications Mathematicae Debrecen4, 384–397 (1956)Google Scholar
  3. 3.
    Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. Amer. Math. Soc.11, 85–141 (1984)Google Scholar
  4. 4.
    Brolin, H.: Invariant sets under iteration of rational functions. Ark. Math.6, 103–144 (1966)Google Scholar
  5. 5.
    Cayley, A.: Application of the Newton-Fourier method to an imaginary root of an equation. Quart. J. Pure Appl. Math.16, 179–185 (1879). Sur les racines d'une équation algebraique. C.R. Acad. Sci.110, 215–218 (1890)Google Scholar
  6. 6.
    Curry, J.H., Garnett, L., Sullivan, D.: On the iteration of a rational function: computer experiments with Newton's method. Commun. Math. Phys.91, 267–277 (1983)Google Scholar
  7. 7.
    Devaney, R.: An introduction to chaotic dynamical systems. Menlo Park, CA: Benjamin/Cummings (1986)Google Scholar
  8. 8.
    Douady, A., Hubbard, J.: Itération des polynômes quadratiques complexes. C.R. Acad. Sci. Paris294, 123–126 (1982)Google Scholar
  9. 9.
    Douady, A., Hubbard, J.: On the dynamics of polynomial-like mappings. Ann. Sci. Ec. Norm. Sup. Paris18, 287–343 (1985)Google Scholar
  10. 10.
    Falconer, K.J.: The geometry of fractal sets. Cambridge Univ. Press (1985)Google Scholar
  11. 11.
    Fatou, P.: Sur les equations fonctionelles. Bull. Soc. Math. France47, 161–271 (1919);48, 33–94, 208–314 (1920)Google Scholar
  12. 12.
    Feigenbaum, M.: Quantative universality for a class of nonlinear transformations. J. Stat. Phys.19, 25–52 (1978)Google Scholar
  13. 13.
    Henrici, P.: Applied and computational complex analysis, vol. 1. New York: Wiley (1974)Google Scholar
  14. 14.
    Howland, J.L., Vaillancourt, R.: Attractive cycles in the iteration of meromorphic functions. Num. Math.46, 323–337 (1985)Google Scholar
  15. 15.
    Householder, A.S.: Principles of numerical analysis. New York: McGraw-Hill (1953)Google Scholar
  16. 16.
    Hurley, M., Martin, C.: Newton's algorithm and chaotic dynamical systems. SIAM J. Math. Anal.15, 238–252 (1984)Google Scholar
  17. 17.
    Julia, G.: Memoire sur l'itération des fonctions rationelles. J. Math. Pures Appl.4, 47–245 (1918)Google Scholar
  18. 18.
    Mandelbrot, B.: Fraetal aspects ofz→λz(1−z) for complex λ andz. Ann. N.Y. Acad. Sci.357, 249–259 (1985)Google Scholar
  19. 19.
    Mandelbrot, B.: Fractal geometry of nature, San Francisco: W.H. Freeman (1983)Google Scholar
  20. 20.
    Peitgen, H.O., Richter, P.: The beauty of fractals, Images of complex dynamical systems. Berlin, Heidelberg, New York: Springer-Verlag (1986)Google Scholar
  21. 21.
    Saari, D.G., Urenko, J.B.: Newton's method, circle maps, and chaotic motion. Amer. Math. Monthly91, 3–17 (1984)Google Scholar
  22. 22.
    Schröder, E.: Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann.2, 317–364 (1870)Google Scholar
  23. 23.
    Smyth, W.F.: The construction of rational iterating functions. Math. Comput.32, 811–827 (1978)Google Scholar
  24. 24.
    Vrscay, E.R.: Julia sets and Mandelbrot-like sets associated with higher order Schröder rational iteration functions. Math. Comput.46, 151–169 (1986)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Edward R. Vrscay
    • 1
  • William J. Gilbert
    • 2
  1. 1.Department of Applied MathematicsUniversity of WaterlooWaterlooCanada
  2. 2.Department of Pure Mathematics, Faculty of MathematicsUniversity of WaterlooWaterlooCanada

Personalised recommendations