Numerische Mathematik

, Volume 51, Issue 5, pp 559–569

Error estimates for semidiscrete Galerkin type approximations to semilinear evolution equations with nonsmooth initial data

  • Hans-Peter Helfrich
Article

Summary

Error estimates for the semidiserete Galerkin method for abstract semilinear evolution equations with non-smooth initial data are given. In concrete cases almost optimal order of convergence for linear finite elements results.

Subject Classifications

AMS (MOS): 65 N 30 CR: G 1.8 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amann, H.: Existence and regularity for semilinear parabolic evolution equations. Ann. Soc. Norm. Super. Pisa, Cl. Sci., IV. Ser.,9, 593–676 (1984)Google Scholar
  2. 2.
    Amann, H.: Quasilinear evolution equations and parabolic systems. Trans. Am. Math. Soc.293, 191–227 (1986)Google Scholar
  3. 3.
    Babuska, I., Fix, G.: The finite element method for time dependent problems, Chapter 11 of the survey lectures. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A.K. Aziz, ed.) pp. 345–359 New York: Academic Press 1972Google Scholar
  4. 4.
    Bernardi, C., Raugel, G.: Approximation numérique de certaines équations paraboliques non linéaires. RAIRO Anal. Numer.18, 237–285 (1984)Google Scholar
  5. 5.
    Bramble, J.H., Schatz, A.H., Thomée, V., Wahlbin, L.B.: Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations. SIAM J. Numer. Anal.14, 218–241 (1977)CrossRefGoogle Scholar
  6. 6.
    Fujita, H.: On the semi-discrete finite element approximation for the evolution equationu 1+A(t)u=0 of parabolic type. In: Topics in Numerical Analysis III (J. Miller, ed.), pp. 143–157. London: Academic Press 1977Google Scholar
  7. 7.
    Fujita, H., Mizutani, A.: On the finite element method for parabolic equations, I, Approximation of holomorphic semi-groups. J. Math. Soc. Japan28, 749–771 (1976)Google Scholar
  8. 8.
    Grisvard, P.: Caractérisation de quelques espaces d'interpolation. Arch. Ration. Mech. Anal.25, 40–63 (1967)Google Scholar
  9. 9.
    Helfrich, H.-P.: Fehlerabschätzungen für das Galerkinverfahren zur Lösung von Evolutionsgleichungen. Manuscripta Math.13, 219–235 (1974)Google Scholar
  10. 10.
    Helfrich, H.-P.: Lokale Konvergenz des Galerkinverfahrens bei Gleichungen vom parabolischen Typ in Hilberträumen, Habilitationsschrift. Freiburg, i. Br. 1975Google Scholar
  11. 11.
    Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math. 840. Heidelberg, Berlin, New York: Springer 1981Google Scholar
  12. 12.
    Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem, I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal.19, 275–311 (1982)Google Scholar
  13. 13.
    Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem, III. Smoothing property and higher order error estimates for spatial discretization. SIAM J. Numer. Anal. (to appear)Google Scholar
  14. 14.
    Mingyou, H., Thomée, V.: Some convergence estimates for semidiscrete type schemes for timedependent nonselfadjoint parabolic problems. Math. Comput.37, 327–346 (1981)Google Scholar
  15. 15.
    Johnson, C., Larsson, S., Thomée, V., Wahlbin, L.B.: Error estimates for spatially discrete approximations of semilinear parabolic equations with nonsmooth initial data. Math. Comput. (to appear)Google Scholar
  16. 16.
    Kato, T.: Perturbation Theory for Linear Operators, Corrected Printing of the Second Edition, Heidelberg, Berlin, New York: Springer 1982Google Scholar
  17. 17.
    Kato, T., Fujita, H.: On the nonstationary Navier-Stokes system. Rend. Semin. Math., Padova32, 243–260 (1962)Google Scholar
  18. 18.
    Krein, S.G.: Linear Differential Equations in Banach Space. Am. Math. Soc., Providence, R.I. 1972Google Scholar
  19. 19.
    Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Heidelberg, Berlin, New York: Springer 1972Google Scholar
  20. 20.
    Luskin, M., Rannacher, R.: On the smoothing property of the Galerkin method for parabolic equations. SIAM J. Numer. Anal.19, 93–113 (1982)Google Scholar
  21. 21.
    Nitsche, J.A.: Approximation des eindimensionalen Stefan-Problems durch finite Elemente. International Congress of Mathematicians, Helsinki 1978Google Scholar
  22. 22.
    Nitsche, J.A.: Finite element approximations for free boundary problems, Computational Methods in Nonlinear Mechanics. Proc. TICOM, 2nd Int. Conf. Austin. Texas 1979, pp. 341–360, 1980Google Scholar
  23. 23.
    Okamoto, H.: On the semi-discrete finite element approximation for the nonstationary Navier-Stokes equation. Univ. Tokyo, Sect. I. J. Fac. Sci.29, 613–651 (1982)Google Scholar
  24. 24.
    Peetre, J.: Nouvelles propriétés d'espaces d'interpolation. C. R. Acad. Sci. Paris256, 1424–1426 (1963)Google Scholar
  25. 25.
    Rothe, F.: Global Solutions of Reaction-Diffusion Systems. Lecture Notes in Math. 1072. Heidelberg, Berlin, New York: Springer 1984Google Scholar
  26. 26.
    Sammon, P.H.: Convergence estimates for semidiscrete parabolic equation approximations. SIAM J. Numer. Anal.19, 68–92 (1982)Google Scholar
  27. 27.
    Schatz, A.H., Thomée, V., Wahlbin, L.B.: Maximum norm stability and error estimates in parabolic finite element equations. Comm. Pure Appl. Math.33, 265–304 (1980)Google Scholar
  28. 28.
    Schröder, H.: Semidiscrete Galerkinverfahren für quasi-lineare Evolutionsgleichungen mit einem Differentialoperator dritter Ordnung. Dissertation, Universität Bonn 1986Google Scholar
  29. 29.
    Sobolevskii, P.E.: Equations of parabolic type in a Banach space. Am. Math. Soc. Transl.49, 1–62 (1966)Google Scholar
  30. 30.
    Suzuki, T.: On the rate of convergence of the difference finite element approximation for parabolic equations. Proc. Japan Acad. Ser. A. Math. Sci.54, 326–331 (1978)Google Scholar
  31. 31.
    Suzuki, T.: Full-discrete finite element approximation of evolution equationu 1+A(t)u=0 of parabolic type. Univ. Tokyo, Sect. I. J. Fac. Sci. A29, 195–240 (1982)Google Scholar
  32. 32.
    Thomée, V.: Some convergence results for Galerkin methods for parabolic boundary value problems, Math. Aspects of Finite Elements. In: Partial Differential Equations (C. de Boor, ed.), pp. 55–88. New York: Academic Press 1974Google Scholar
  33. 33.
    Thomée, V.: Error estimates for finite element methods for semilinear parabolic problems with nonsmooth data, Equadiff 6. Lect. Notes Math.1192, 339–344 (1986)Google Scholar
  34. 34.
    Thomée, V., Wahlbin, L.B.: Maximum-norm stability and error estimates in Galerkin methods for parabolic equations in one space variable. Numer. Math.41, 345–371 (1983)Google Scholar
  35. 35.
    Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. Amsterdam: North Holland 1978Google Scholar
  36. 36.
    von Wahl, W.: The Equations of Navier-Stokes and Abstract Parabolic Equations. Braunschweig: Vieweg 1985Google Scholar
  37. 37.
    Weissler, F.B.: Local existence and nonexistence for semi-linear parabolic equations inL p. Indiana Univ. J.29, 79–102 (1980)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Hans-Peter Helfrich
    • 1
  1. 1.Mathematisches Seminar der Landwirtschaftlichen FakultätBonn 1Federal Republic of Germany

Personalised recommendations