Numerische Mathematik

, Volume 27, Issue 4, pp 449–469 | Cite as

Comparing routines for the numerical solution of initial value problems of ordinary differential equations in multiple shooting

  • H. J. Diekhoff
  • P. Lory
  • H. J. Oberle
  • H. J. Pesch
  • P. Rentrop
  • R. Seydel


The numerical solution of two-point boundary value problems and problems of optimal control by shooting techniques requires integration routines. By solving 15 real-life problems four well-known intergrators are compared relative to reliability, fastness and precision. Hints are given, which routines could be used for a problem.


Differential Equation Ordinary Differential Equation Mathematical Method Multiple Shooting Integration Routine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aziz, A. K. (ed.): Numerical solutions of boundary value problems for ordinary differential equations. Proceedings of a Symposium held at the University of Maryland, 1974. New York: Academic Press 1975Google Scholar
  2. 2.
    Bauer, H., Neumann, K.: Berechnung optimaler Steuerungen, Maximumprinzip und dynamische Optimierung. Lecture Notes in Operations Research and Mathematical Systems, Vol. 17. Berlin-Heidelberg-New York: Springer 1969Google Scholar
  3. 3.
    Broyden, C. G.: A class of methods for solving non-linear simultaneous equations. Math. Comp.19, 577–593 (1965)Google Scholar
  4. 4.
    Bulirsch, R.: Numerical calculation of elliptic integrals and elliptic functions, I, II. Numer. Math.7, 78–90, 353-354 (1965)Google Scholar
  5. 5.
    Bulirsch, R., Oettli, W., Stoer, J. (eds.): Optimization and optimal control. Proceedings of a Conference held at Oberwolfach, 1974, Lecture Notes, Vol. 477. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  6. 6.
    Bulirsch, R., Stoer, J.: Numerical treatment of ordinary differential equations by extrapolation methods. Numer. Math.8, 1–13 (1966)Google Scholar
  7. 7.
    Bulirsch, R., Stoer, J., Deuflhard, P.: Numerical solution of nonlinear two-point boundary value problems, I. Numer. Math. (to be published)Google Scholar
  8. 8.
    Cole, J. D., Keller, H. B., Saffmann, P. G.: The flow a viscous compressible fluid through a very narrow gap. SIAM J. Appl. Math.15, 605–617 (1967)Google Scholar
  9. 9.
    Daniel, J. W., Martin, A. J.: Implementing deferred corrections for Numerov's difference method for second-order two-point boundary value problems. Tech. Rep. CNA-107, Center for Numerical Analysis, The University of Texas at Austin (1975)Google Scholar
  10. 10.
    Davenport, S. M., Shampine, L. F., Watts, H. A.: Comparison of some codes for the initial value problem for ordinary differential equations. In: [1], pp. 349–353 (1975)Google Scholar
  11. 11.
    Deuflhard, P.: A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting. Numer. Math.22, 289–315 (1974)Google Scholar
  12. 12.
    Deuflhard, P.: A relaxation strategy for the modified Newton method. In [5], pp. 59–73 1975Google Scholar
  13. 13.
    Deuflhard, P., Pesch, H.-J., Rentrop, P.: A modified continuation method for the numerical solution of nonlinear two-point boundary value problems by shooting techniques. Numer. Math.26, 327–343 (1976)Google Scholar
  14. 14.
    Dickmanns, E. D.: Maximum range, three-dimensional lifting planetary entry. NASA Tech. Rep. R-M 199, Marshall Space Flight Center, Alabama (1972)Google Scholar
  15. 15.
    Dickmanns, E. D., Pesch, H.-J.: Influence of a reradiative heating constraint on lifting entry trajectories for maximum lateral range. 11th International Symposium on Space Technology and Science, Tokyo, July 1975Google Scholar
  16. 16.
    Enright, W. H., Bedet, R., Farkas, I., Hull, T. E.: Test results on initial value methods for non-stiff ordinary differential equations. Tech. Rep. No. 68, Department of Computer Science, University of Toronto (1974)Google Scholar
  17. 17.
    England, R.: Error estimates for Runge-Kutta type solutions to systems of ordinary differential equations. Comp. J.12, 166–170 (1969)Google Scholar
  18. 18.
    Fehlberg, E.: Klassische Runge-Kutta-Formeln fünfter und siebenter Ordnung mit Schrittweitenkontrolle. Computing4, 93–106 (1969)Google Scholar
  19. 19.
    Fehlberg, E.: Klassische Runge-Kutta-Formeln fünfter und siebenter Ordnung mit Schrittweitenkontrolle und ihre Anwendung auf Wärmeleitungsprobleme. Computing6, 61–71 (1970)Google Scholar
  20. 20.
    Fermi, E., Pasta, J. R., Ulam, S.: Studies of nonlinear problems, I. Tech. Rep. No. 1940, Los Alamos (1955)Google Scholar
  21. 21.
    Gragg, W. B.: On extrapolation algorithms for ordinary initial value problems. SIAM J. Numer. Anal. Ser. B2, 384–403 (1965)Google Scholar
  22. 22.
    Holt, J. F.: Numerical solution of nonlinear two-point boundary value problems by finite difference methods. Comm. ACM.7, 366–373 (1964)Google Scholar
  23. 23.
    Hull, T. E.: Numerical solutions of initial value problems for ordinary differential equations. In: [1], pp. 3–26 (1975)Google Scholar
  24. 24.
    Hussels, H. G.: Schrittweitensteuerung bei der Integration gewöhnlicher Differentialgleichungen mit Extrapolationsverfahren. Universität zu Köln, Mathemathisches Institut, Diplomarbeit (1973)Google Scholar
  25. 25.
    Keller, H. B.: Numerical methods for two-point boundary value problems. Chapter 6: Practical examples and computational exercises. London: Blaisdell 1968Google Scholar
  26. 26.
    King, W. S., Lewellen, W. S.: Boundary-layer similarity solutions for rotating flows with and without magnetic interaction. Ref. ATN-63 (9227)-6, Aerodynamics and Propulsion Res. Lab., Aerospace Corp., El Segundo. Calif. (1963)Google Scholar
  27. 27.
    Küpper, T.: A singular bifurcation problem. Math. Rep. No. 99, Battelle Advanced Studies Center, Geneva (1976)Google Scholar
  28. 28.
    Lentini, M., Pereyra, V.: Boundary problem solvers for first order systems based on deferred corrections. In: [1], pp. 293–315 (1975)Google Scholar
  29. 29.
    Na, T. Y., Tang, S. C.: A method for the solution of conduction heat transfer with non-linear heat generation. ZAMM49, 45–52 (1969)Google Scholar
  30. 30.
    Pereyra, V.: High order finite difference solution of differential equations. Report STAN-CS-73-348, Computer Science Department, Stanford University (1973)Google Scholar
  31. 31.
    Pesch, H.-J.: Numerische Berechnung optimaler Steuerungen mit Hilfe der Mehrzielmethode dokumentiert am Problem der Rückführung eines Raumgleiters unter Berücksichtigung von Aufheizungsbegrenzungen. Universität zu Köln, Mathematisches Institut, Diplomarbeit (1973)Google Scholar
  32. 32.
    Pimbley, G.: Eigenfunction branches of nonlinear operators and their bifurcations. Lecture Notes, Vol. 104. Berlin-Heidelberg-New York: Springer 1969Google Scholar
  33. 33.
    Reissner, E., Weinitschke, H. J.: Finite pure bending of circular cylindrical tubes. Quarterly Appl. Math.20, 305–319 (1963)Google Scholar
  34. 34.
    Rentrop, P.: Numerical solution of the singular Ginzburg-Landau equations by multiple shooting. Computing16, 61–67 (1976)Google Scholar
  35. 35.
    Roberts, S. M., Shipman, J. S.: Two-point boundary value problems: Shooting methods. New York: Elsevier 1972Google Scholar
  36. 36.
    Russel, R. D., Shampine, L. F.: A collocation method for boundary value problems. Numer. Math.19, 1–28 (1972)Google Scholar
  37. 37.
    Scott, M. R.: Invariant imbedding and its applications to ordinary differential equations: An introduction. Reading, Massachusetts: Addison-Wesley 1973Google Scholar
  38. 38.
    Scott, M. R., Watts, H. A.: SUPORT—A computer code for two-point boundary-value problems via orthonormalization. Tech. Rep. SAND-75-0198. Sandia Laboratories, Albuquerque, New Mexico (1975)Google Scholar
  39. 39.
    Sedgwick, A. E.: An effective variable order variable step Adams method. Ph. D. Thesis, Tech. Rep. No. 53, Department of Computer Science, University of Toronto (1973)Google Scholar
  40. 40.
    Stoer, J., Bulirsch, R.: Einführung in die Numerische Mathematik, 11. Heidelberger Taschenbuch, Bd. 114. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  41. 41.
    Stoleru, L. G.: An optimal policy for economic growth. Econometrica33, 321–348 (1965)Google Scholar
  42. 42.
    Thurston, G. A.: Newton's method applied to problems in nonlinear mechanics. J. Appl. Mech.32, 383–388 (1965)Google Scholar
  43. 43.
    Weinitschke, H. J.: Die Stabilität elliptischer Zylinderschalen bei reiner Biegung. ZAMM50, 411–422 (1970)Google Scholar
  44. 44.
    Weinitschke, H. J.: On nonsymmetric bending instability of elliptic cylindrical tubes. Unpublished manuscript, TU Berlin (to appear)Google Scholar
  45. 45.
    Wick, R.: Numerische Lösung volkswirtschaftlicher Variationsprobleme mit Zustandsbeschränkungen unter Anwendung der Mehrzielmethode. Universität zu Köln, Mathematisches Institut, Diplomarbeit (1973)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • H. J. Diekhoff
    • 1
  • P. Lory
    • 1
  • H. J. Oberle
    • 1
  • H. J. Pesch
    • 1
  • P. Rentrop
    • 1
  • R. Seydel
    • 1
  1. 1.Institut für Mathematik der Technischen Universität MünchenMünchen 2Germany

Personalised recommendations