Advertisement

Mathematische Annalen

, Volume 169, Issue 1, pp 136–176 | Cite as

Convergent series expansions for quasi-periodic motions

  • Jürgen Moser
Article

Keywords

Series Expansion Convergent Series Convergent Series Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Arnold, V. I.: Small Divisors I, On mappings of a circle onto itself. Izvest. Akad. Nauk., Ser. Mat.25, No. 1, 21–86 (1961).Google Scholar
  2. [2]
    —— Proof ofA. N. Kolmogorov's theorem on the preservation of quasi-periodic motions under small perturbations of the Hamiltonian. Uspekhi Mat. Nauk U.S.S.R.18, Ser. 5 (113), 13–40 (1963).Google Scholar
  3. [3]
    Charlier, C. L.: Die Mechanik des Himmels. Vol.2, Section 10, § 5, § 6. Leipzig 1907.Google Scholar
  4. [4]
    Jacobson, N.: Lie Algebras. New York-London: Interscience 1962.Google Scholar
  5. [5]
    Kolmogorov, A. N.: Doklady Akad. Nauk U.S.S.R.98, 527–530 (1954).Google Scholar
  6. [6]
    Melnikov, V. K.: On some cases of conservation of conditionally periodic motions under a small change of the Hamiltonian function. Preprint, Joint Inst. for Nucl. Research, Dubna, 1965, also Doklady Akad. Nauk S.S.S.R.165, No. 6, 1245–1248 (1965).Google Scholar
  7. [7]
    Moser, J.: Some aspects of non-linear differential equations. 6 lectures, Intl. Math. Summer Cr., held at Varenna, Italy, 1964, to be published in Ann. Scuola Normale Sup. Pisa 1966.Google Scholar
  8. [8]
    -- On the theory of quasi-periodic motions. Lectures held at Stanford Univ., Aug. 1965, SIAM Review8, No. 2, 145–172 (1966).Google Scholar
  9. [9]
    Poincaré, H.: Méthodes nouvelles de la mécanique célèste, Vol.2, Chap.9. Paris: Gauthier-Villars 1893.Google Scholar
  10. [10]
    Pontrjagin, L. S.: Topologische Grouppen, Vol.2, Chap. 10. German translation. Leipzig: Teubner 1958.Google Scholar
  11. [11]
    Siegel, C. L.: Vorlesungen über Himmelsmechanik. § 24, p. 168. Berlin-Heidelberg-New York: Springer 1965.Google Scholar
  12. [12]
    Sternberg, S.: Infinite Lie groups and the formal aspects of dynamical systems. J. Math. Mech.10, 451–474 (1961).Google Scholar
  13. [13]
    von Zeipel, H.: Arkiv Mat. Astron. Fysik11, 12, 13 (1916–1917).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • Jürgen Moser
    • 1
  1. 1.Courant Inst. Math. Sci.New York UniversityNew York

Personalised recommendations