Numerische Mathematik

, Volume 33, Issue 4, pp 425–435

A quadratically convergent Jacobi-like method for real matrices with complex eigenvalues

  • K. Veselić
  • H. J. Wenzel
Article

Abstract

A real Jacobi-like algorithm for diagonalizing arbitrary real matrices with complex eigenvalues is described and its applicability discussed. Numerical results are given and compared with those of the well-known real and complex algorithm of Eberlein.

Subject Classifications

AMS(MOS): 65F15 CR: 5.14 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refereces

  1. 1.
    Eberlein, P.J: A Jacobi method for the automatic computation of eigenvalues and eigenvectors of an arbitrary matrix. SIAM J.10, 74–88 (1962)CrossRefGoogle Scholar
  2. 2.
    Eberlein, P.J., Boothroyd, J.: Solution to the eigenproblem by a norm-reducing Jacobi-type method. Numer. Math.11, 1–12 (1968)Google Scholar
  3. 3.
    Eberlein, P.J.: Solution to the complex eigenproblem by a norm-reducing Jacobi-type method. Numer. Math.14, 232–245 (1970)Google Scholar
  4. 4.
    Paardekooper, M.H.C.: An eigenvalue algorithm for skew-symmetric matrices. Numer. Math.17, 189–202 (1971)Google Scholar
  5. 5.
    Veselić, K.: On a class of Jacobi-like procedures for diagonalizing arbitrary real matrices. Numer. Math.33, 157–172 (1979)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • K. Veselić
    • 1
  • H. J. Wenzel
    • 1
  1. 1.Universität DortmundDortmund 50Germany (Fed. Rep.)

Personalised recommendations