Numerische Mathematik

, Volume 39, Issue 1, pp 51–64 | Cite as

A capacitance matrix method for Dirichlet problem on polygon region

  • M. Dryja


An efficient algorithm for the solution of linear equations arising in a finite element method for the Dirichlet problem is given. The cost of the algorithm is proportional toN2log2N (N=1/h) where the cost of solving the capacitance matrix equations isNlog2N on regular grids andN3/2log2N on irregular ones.

Subject Classifications

AMS(MOS): 65N20 65F05 65F10 CR: 517,5.14 


  1. 1.
    Andreev, W.B.: Stability of the difference schemes for elliptic equations with regard Dirichlet's condition. U.S.S.R. Computional Math. and Math. Phys.12, 598–611 (1972)Google Scholar
  2. 2.
    Astrakhantsev, G.P.: On the numerical solution of Dirichlet's problem in an arbitrary region. Methods of Computational and Applied Mathematics. (G.I. Marchuk, ed.)2. pp. 63–72. Novosibirsk: Computing Center 1977Google Scholar
  3. 3.
    Buzbee, B.L., Dorr, F.W., George, J.A., Golub, G.H.: The direct solution of the discrete Poisson equation on irregular regions. SIAM J. Numer. Anal.8, 722–736 (1971)Google Scholar
  4. 4.
    Concus, P., Golub, G.H., O'Leary, D.P.: A generalized conjugate gradient method for the numerical solution of elliptic PDE. Sparse Matrix Computations (J.R. Bunch and D.J. Rose, eds.) pp. 309–332. New York: Academic Press 1976Google Scholar
  5. 5.
    Cooley, J.W., Lewis, P.A.W., Welch, P.D.: The fast Fourier transform algorithm: Programming consideration in the calculation of sine, cosine and Laplace transform. J. Sound Vibration12, 315–337 (1970)Google Scholar
  6. 6.
    Dahlquist, G., Björck, A.: Anderson, N.: Numerical Methods. Englewood Cliffs: N.J., Prentice-Hall 1974Google Scholar
  7. 7.
    Dyakonov, E.G.: On the some direct and iterative method based on a border matrix. Methods of Computational and Applied Mathematics. (G.I. Marchuk, ed.)4. pp. 45–68. Novosibirsk: Computing Center 1979Google Scholar
  8. 8.
    Hockney, R.W.: The potential calculation and some applications. Methods in Computational Physics, vol.9. New York: Academic Press 1970Google Scholar
  9. 9.
    Kuznetsov, Ju.A.: Block-relaxation methods in subspace their optimization and application. Variational-difference method in Mathematical Physics (G.I. Marchuk, ed.), pp. 178–212. Novosibirsk: Computing Center 1978Google Scholar
  10. 10.
    Oganesjan, L.A., Ruchovec, L.A.: Variational-difference method of solving elliptic problems. Erewan: Computing Center 1979Google Scholar
  11. 11.
    Proskurowski, W., Widlund, O.: On the numerical solution of Helmholtz equation by the capacitance matrix method. Math. Comput.30, 433–468 (1976)Google Scholar
  12. 12.
    Shieh, A.S.L.: Fast Poisson solvers on general two dimensional regions for the Dirichlet problem. Numer. Math.31, 405–429 (1979)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • M. Dryja
    • 1
  1. 1.Institute of InformaticsUniversity of WarsawWarsawPoland

Personalised recommendations