Numerische Mathematik

, Volume 52, Issue 2, pp 165–185

# Error estimates for a semi-explicit numerical scheme for Stefan-type problems

• Claudio Verdi
• Augusto Visintin
Article

## Summary

A parabolic problem of the following form is considered
$$\frac{\partial }{{\partial t}}\left[ {a\vartheta + w} \right] - \Delta \vartheta = f$$
(1)
$$w \varepsilon \Lambda (\vartheta ),$$
(2)
wherea is a positive constant,f is a datum and λ is a maximal monotone graph. This system contains the (weak formulation of the)Stefan problem as a particular case. Here the problem (1), (2) is approximated by coupling (1) with therelaxed equation
$$\varepsilon \frac{{\partial w}}{{\partial t}} + \Lambda ^{ - 1} (w) \mathrel\backepsilon \vartheta (\varepsilon : constant > 0).$$
(3)
The problem (1), (3) is then discretized in time by thesemi-explicit scheme
$$a\frac{{\vartheta ^n - \vartheta ^{n - 1} }}{\tau } + \frac{{w^n - w^{n - 1} }}{\tau } - \Delta \vartheta ^n = f^n$$
(4)
$$\varepsilon \frac{{w^n - w^{n - 1} }}{\tau } + \Lambda ^{ - 1} (w^n ) \mathrel\backepsilon \vartheta ^{n - 1} ;$$
(5)
a finite element space discretization and quadrature formulae are then introduced. Thus at each time-step (5) is replaced by a finite number ofindependent algebraic equations, which can be solved with respect to the barycentral values ofwn; then (4) is reduced to alinear system of algebraic equations having as unknowns the nodal values of ϑn. Assuming the condition τ/ε≦a, the fully discrete scheme is stable and its solution converges to that of (1), (2). Error estimates are proved. The results of some numerical experiments are discussed; they show that the present method is faster than other classical procedures.

### Subject Classifications

AMS(MOS): 65N05 CR: G1.8

## Preview

### References

1. 1.
Berger, A.E., Brezis, H., Rogers, J.C.W.: A numerical method for solving the problemu t−δf(u)=0. RAIRO Anal. Numér.13, 297–312 (1979)Google Scholar
2. 2.
Ciarlet, P.G.: The finite element method for elliptic problems. Amsterdam. North-Holland 1978Google Scholar
3. 3.
Ciavaldini, J.F.: Analyse numérique d'un problème de Stefan à deux phases par une méthode d'éléments finis. SIAM J. Numer. Anal.12, 464–487 (1975)
4. 4.
Damlamian, A.: Homogenization for Eddy currents. Delft Prog. Rep.6, 268–275 (1981)Google Scholar
5. 5.
Elliott, C.M.: Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal.7, 61–71 (1987)Google Scholar
6. 6.
Jerome, J.W., Rose, M.E.: Error estimates for the multidimensional two-phase Stefan problem. Math. Comput.39, 377–414 (1982)Google Scholar
7. 7.
Magenes, E.: Problemi di Stefan bifase in piú variabili spaziali. Catania, Le Matematiche36, 65–108 (1981)Google Scholar
8. 8.
Meyer, G.H.: Multidimensional Stefan problems. SIAM J. Numer. Anal.10, 522–538 (1973)
9. 9.
Nochetto, R.H., Verdi, C.: Approximation of degenerate parabolic problems using numerical integration. SIAM J. Numer. Anal. (to appear)Google Scholar
10. 10.
Raviart, P.A.: The use of numerical integration in finite element methods for solving parabolic equations. In: Topics in numerical analysis. Miller, J.J.H. (ed.), pp. 233–264. New York: Academic Press 1973Google Scholar
11. 11.
Shamir, E.: Regularization of mixed second-order elliptic problems. Isr. J. Math.6, 150–168 (1968)Google Scholar
12. 12.
Verdi, C., Visintin, A.: Numerical analysis of the multidimensional Stefan problem with supercooling and superheating. Boll. Unione Mat. Ital. I-B7, 795–814 (1987)Google Scholar
13. 13.
Visintin, A.: Stefan problem with phase relaxation. IMA J. Appl. Math.34, 225–245 (1985)Google Scholar
14. 14.
White, R.E.: An enthalpy formulation of the Stefan problem. SIAM J. Numer. Anal.19, 1129–1157 (1982)