Inventiones mathematicae

, Volume 72, Issue 3, pp 407–464

Fields of large transcendence degree generated by values of elliptic functions

  • D. W. Masser
  • G. Wüstholz
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, M., Masser, D.W.: Lower bounds for heights on elliptic curves. Math. Z.174, 23–34 (1980)Google Scholar
  2. 2.
    Borel, A.: Linear algebraic groups. New York: Benjamin 1969Google Scholar
  3. 3.
    Brownawell, W.D.: On the orders of zero of certain functions. Mém. Soc. Math. France2, 5–20 (1980)Google Scholar
  4. 4.
    Brownawell, W.D., Masser, D.W.: Multiplicity estimates for analytic functions II. Duke Math. J.47, 273–295 (1980)Google Scholar
  5. 5.
    Cassels, J.W.S.: An introduction to the geometry of numbers. Berlin-Göttingen-Heidelberg: Springer 1959Google Scholar
  6. 6.
    Chudnovsky, G.V.: Analytic methods in diophantine approximation. Kiev Preprints I.M. 74.8 and 74.9 (1974)Google Scholar
  7. 7.
    Chudnovsky, G.V.: Algebraic independance of values of the exponential and elliptic functions, Proceedings of the International Congress of Math. Vol. 1, pp. 339–350. Helsinki 1978Google Scholar
  8. 8.
    Chudnovsky, G.V.: Indépendance algébrique dans la méthode de Gelfond-Schneider. C.R. Acad. Sci. Paris291A, 365–368 (1980)Google Scholar
  9. 9.
    Gelfond, A.O.: Transcendental and algebraic numbers. New York: Dover 1960Google Scholar
  10. 10.
    Hartshorne, R.: Algebraic geometry. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  11. 11.
    Hermann, G.: Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Math. Ann.95, 736–788 (1926)Google Scholar
  12. 12.
    Kolchin, E.R.: Algebraic groups and algebraic dependence. Amer. J. Math.90, 1151–1164 (1968)Google Scholar
  13. 13.
    Lazard, D.: Algèbre linéaire surK[X 1,...,X n] et élimination. Bull. Soc. Math. France105 165–190 (1977)Google Scholar
  14. 14.
    Masser, D.W.: Small values of the quadratic part of the Néron-Tate height, Progress in Math. Vol. 12, pp. 213–222. Boston-Basel-Stuttgart: Birkhäuser 1981Google Scholar
  15. 15.
    Masser, D.W.: On polynomials and exponential polynomials in several complex variables. Invent. Math.63, 81–95 (1981)Google Scholar
  16. 16.
    Masser, D.W.: A vanishing theorem for power series. Invent. Math.67, 275–296 (1982)Google Scholar
  17. 17.
    Masser, D.W., Wüstholz, G.: Zero estimates on group varieties I. Invent. Math.64, 489–516 (1981)Google Scholar
  18. 18.
    Masser, D.W., Wüstholz, G.: Algebraic independence properties of values of elliptic functions, to appear in the Proceedings of the Exeter Journées Arithmétiques 1980 (ed. J.V. Armìtage), L.M.S. Lecture Nótes No. 56, Cambridge 1982Google Scholar
  19. 19.
    Philippon, P.: Indépendance algébrique de valeurs de fonctions exponentiellesp-adiques. J. reine angew. Math.329, 42–51 (1981)Google Scholar
  20. 20.
    Ramachandra, K.: Contributions to the theory of transcendental numbers I, II. Acta Arith.14, 65–88 (1968)Google Scholar
  21. 21.
    Reyssat, E.: Un critère d'indépendance algébrique. J. reine angew. Math.329, 66–81 (1981)Google Scholar
  22. 22.
    Seidenberg, A.: Constructions in algebra. Trans. Amer. Math. Soc.197, 273–313 (1974)Google Scholar
  23. 23.
    Tijdeman, R.: On the number of zeros of general exponential polynomials. Indag. Math.33, 1–7 (1971)Google Scholar
  24. 24.
    Tijdeman, R.: An auxiliary result in the theory of transcendental numbers. J. Number Th.5, 80–94 (1973)Google Scholar
  25. 25.
    Waldschmidt, M.: Nombres transcendants et groupes algébriques. Astérisque69–70 (1979)Google Scholar
  26. 26.
    Zariski, O., Samuel, P.: Commutative algebra Vol. II. Berlin-Heidelberg-New York: Springer 1968Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • D. W. Masser
    • 1
  • G. Wüstholz
    • 2
  1. 1.Department of MathematicsUniversity of NottinghamNottinghamUK
  2. 2.Fachbereich 7-MathematikGesamthochschule WuppertalWuppertalFederal Republic of Germany

Personalised recommendations