Numerische Mathematik

, Volume 7, Issue 1, pp 18–31 | Cite as

Asymptotic expansions for the error of discretization algorithms for non-linear functional equations

  • Hans J. Stetter


Functional Equation Mathematical Method Asymptotic Expansion Discretization Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Richardson, C., andJ. Gaunt: The deferred approach to the limit. Trans. Roy. Soc. Lond.226, 300–361 (1927).Google Scholar
  2. [2]
    Romberg, W.: Vereinfachte numerische Integration. Det. Kong. Norske Videnskabers Selskab Forhandl.28, 7, Trondheim 1955.Google Scholar
  3. [3]
    Bauer, F. L., H. Rutishauser, andE. Stiefel: New aspects in numerical quadrature. Proceed. Symposia Appl. Math.15, 199–218 (1963).Google Scholar
  4. [4]
    Laurent, P.-J.: Un théorème de convergence pour le procédé d'extrapolation de Richardson. Compt. Rend. Acad. Sc.256, 1435–1437 (1963).Google Scholar
  5. [5]
    Bulirsch, R.: Bemerkungen zur Romberg-Integration. Num. Math.6, 6–16 (1964).Google Scholar
  6. [6]
    Rutishauser, H.: Ausdehnung des Rombergschen Prinzips. Num. Math.5, 48–54 (1963).Google Scholar
  7. [7]
    Gragg, W.: Repeated extrapolation to the limit in the numerical solution of ordinary differential equations, dissertation, UCLA (1963).Google Scholar
  8. [8]
    Bulirsch, R., andJ. Stoer: Über Fehlerabschätzungen und Extrapolation mit rationalen Funktionen bei Verfahren vom Richardson-Typus. Num. Math.6, 413 (1964).Google Scholar
  9. [9]
    Lin Chün: A discussion on the difference method for the solution of nonlinear differential equations. Scient. Sin.10, 414–419 (1961).Google Scholar
  10. [10]
    Henrici, P.: Discrete variable methods in differential equations. New York: Wiley 1962.Google Scholar
  11. [11]
    Fox, L.: The numerical solution of two-point boundary problems in differential equations. Oxford: Clarendon Press 1957.Google Scholar
  12. [12]
    Sauer, R.: Anfangswertprobleme bei partiellen Differentialgleichungen, 2. Aufl. Berlin-Göttingen-Heidelberg: Springer 1958.Google Scholar
  13. [13]
    Stetter, H. J.: On the convergence of characteristic finite-difference methods of high accuracy for quasi-linear hyperbolic equations. Num. Math.3, 321–344 (1961).Google Scholar
  14. [14]
    —: Maximum bounds for the solutions of initial value problems for partial difference equations. Num. Math.5, 399–424 (1963).Google Scholar
  15. [15]
    Kantorovich, L. V.: Functional analysis and applied mathematics, NBS-translation, 1952, edited byG. E. Forsythe.Google Scholar

Copyright information

© Springer-Verlag 1965

Authors and Affiliations

  • Hans J. Stetter
    • 1
  1. 1.Mathematisches Institut der Technischen Hochschule8 München 2

Personalised recommendations