Numerische Mathematik

, Volume 53, Issue 6, pp 663–686

Convergence of the multilevel Full Approximation Scheme including theV-cycle

  • Arnold Reusken
Article

Summary

The multilevel Full Approximation Scheme (FAS ML) is a well-known solver for nonlinear boundary value problems. In this paper we prove local quantitative convergence statements for a class of FAS ML algorithms in a general Hilbertspace setting. This setting clearly exhibits the structure of FAS ML. We prove local convergence of a nested iteration for a rather concrete class of FAS ML algorithms in whichV-cycles and only one Jacobilike pre- and post-smoothing on each level are used.

Subject Classifications

AMS(MOS): 65N20 CR: G1.8 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allgower, E.L., Böhmer, K., Potra, F.A., Rheinboldt, W.C.: A mesh-independence principle for operator equations and their discretizations. SIAM J. Numer. Anal.23, 160–169 (1986)Google Scholar
  2. 2.
    Bank, R.E., Douglas, C.C.: Sharp estimates for multigrid rates of convergence with general smoothing and acceleration. SIAM J. Numer. Anal.22, 617–633 (1985)Google Scholar
  3. 3.
    Bank, R.E., Rose, D.J.: Analysis of a multilevel iterative method for nonlinear finite element equations. Math. Comput.39, 453–465 (1982)Google Scholar
  4. 4.
    Braess, D., Hackbusch, W.: A new convergence proof for the multigrid method including theV-cycle. SIAM J. Numer. Anal.20, 967–975 (1983)Google Scholar
  5. 5.
    Hackbusch, W.: Multigrid methods and applications. Berlin Heidelberg New York Tokyo: Springer 1985Google Scholar
  6. 6.
    Reusken, A.: Convergence of the multrigrid full approximation scheme for a class of elliptic mildly nonlinear boundary value problems. Numer. Math.52, 251–277 (1988)Google Scholar
  7. 7.
    Sion, M.: On general minimax theorems. Pac. J. Math.8, 171–176 (1958)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Arnold Reusken
    • 1
  1. 1.Department of MathematicsUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations