Numerische Mathematik

, Volume 38, Issue 2, pp 279–298

A study of Rosenbrock-type methods of high order

  • P. Kaps
  • G. Wanner
Article

Summary

This paper deals with the solution of nonlinear stiff ordinary differential equations. The methods derived here are of Rosenbrock-type. This has the advantage that they areA-stable (or stiffly stable) and nevertheless do not require the solution of nonlinear systems of equations. We derive methods of orders 5 and 6 which require one evaluation of the Jacobian and oneLU decomposition per step. We have written programs for these methods which use Richardson extrapolation for the step size control and give numerical results.

Subject Classifications

AMS(MOS): 65L05 CR: 5.17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosenbrock, H.H.: Some general implicit processes for the num, solution of differential equations. Comput. J.5, 329–331 (1963)Google Scholar
  2. 2.
    Calahan, D.A.: A stable and accurate method for the numerical integration of nonlinear systems. Proc. IEEE,56, 744 (1968)Google Scholar
  3. 3.
    van der Houwen, P.J.: Construction of integration formulas for initial value problems. Amsterdam: North Holland 1977Google Scholar
  4. 4.
    Wolfbrandt, A.: A study of Rosenbrock processes with respect to order conditions and stiff stability. Thesis, Göteborg 1977Google Scholar
  5. 5.
    Nørsett S.P., Wolfbrandt, A.: Order conditions for Rosenbrock type methods. Numer. Math.32, 1–15 (1979)Google Scholar
  6. 6.
    Kaps, P., Rentrop, P.: Generalized Runge Kutta methods of order four with step size control for stiff ODE's. Numer. Math.33, 55–68 (1979)Google Scholar
  7. 7.
    Hairer, E., Wanner, G.: Multistep multistage multiderivative methods for ODE's. Computing11, 287–303 (1973)Google Scholar
  8. 8.
    Hairer, E., Wanner, G.: On the Butcher group and general multivalue methods. Computing13, 1–15 (1974)Google Scholar
  9. 9.
    Hairer, E., Wanner, G.: A theory for Nystroem methods. Numer. Math.25, 383–400 (1976)Google Scholar
  10. 10.
    Nørsett, S.P., Wanner, G.: The real-pole sandwich and oscillation equations. BIT19, 79–94 (1979)Google Scholar
  11. 11.
    Enright, W.H. Hull, T.E., Lindberg, B.: Comparing numerical methods for stiff systems of ODE's. BIT15, 10–48 (1975)Google Scholar
  12. 12.
    Gottwald, B.A., Wanner, G.: A reliable Rosenbrock integrator for stiff differential equations. Computing26, 335–360 (1981)Google Scholar
  13. 13.
    Wanner, G.: On the integration of stiff differential equations, ISNM 37. (J. Descloux and J. Marti eds.) Basel: Birkhäuser 1977Google Scholar
  14. 14.
    Kaps, P.: Modifizierte Rosenbrockmethoden der Ordnungen4, 5 and 6 zur numerischen Integration steifer Differentialgleichungen, Dissertation Innsbruck 1977Google Scholar
  15. 15.
    Chan, Y.N.I., Birnbaum, I., Lapidus, L.: Solution of stiff differential equations and the use of imbedding techniques. Industr. and Engin. Chemistry Fundamentals,17, 133–148 (1978)Google Scholar
  16. 16.
    Wanner, G.: On the choice of γ for singly-implicit RK or Rosenbrock methods. BIT20, 102–106 (1980)Google Scholar
  17. 17.
    Nørsett, S.P.: One step methods of Hermite type for numerical integration of stiff systems. BIT14, 63–77 (1974)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • P. Kaps
    • 1
  • G. Wanner
    • 2
  1. 1.Institut für Mathematik und GeometrieTechnische Fakultät der UniversitätInnsbruckAustria
  2. 2.Section de MathématiquesUniversité de GenèveGenève 24Switzerland

Personalised recommendations