Numerische Mathematik

, Volume 54, Issue 2, pp 145–165 | Cite as

The convergence of a direct BEM for the plane mixed boundary value problem of the Laplacian

  • G. Schmidt
  • H. Strese
Article

Summary

In this paper the convergence analysis of a direct boundary elecment method for the mixed boundary value problem for Laplace equation in a smooth plane domain is given. The method under consideration is based on the collocation solution by constant elements of the corresponding system of boundary integral equations. We prove the convergence of this method, provide asymptotic error estimates for the BEM-solution and give some numerical examples.

Subject Classifications

AMS (MOS): 45F15, 45L10, 65N30, 65R20, 65N15 CR: G1.8 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anselone, P.M.: Collectively compact operator approximation theory and applications to integral equations, 1th Ed. Englewood Cliffs: Prentice-Hall 1971Google Scholar
  2. 2.
    Böttcher, A., Silbermann, B.: Invertibility and asymptotics of Toeplitz matrices. 1th Ed. Berlin: Akademie 1983Google Scholar
  3. 3.
    Brebbia, C.A., Telles, J.C.F., Wrobel, L.C.: Boundary element techniques: Theory and applications in engineering, 1th Ed. Berlin Heidelberg New York: Springer 1984Google Scholar
  4. 4.
    Costabel, M., Stephan, E.: Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation. In: Fiszdon, W., Wilmanski, K. (eds.). Mathematical Models and Methods in Mechanics 1981 Warszaw: Banach-Center15, 175–251 (1985)Google Scholar
  5. 5.
    Elschner, J., Schmidt, G.: On spline interpolation in periodic Sobolev spaces. Berlin: Inst. Math. AdW DDR: preprint P-Math-01/83 (1983)Google Scholar
  6. 6.
    Höppner, W., Strese, H.: Die Randelementmethode in der Potentialtheorie. Berlin: Inst. Math. AdW DDR, report R-Math-03/84 (1984)Google Scholar
  7. 7.
    Jaswon, M.A., Symm, G.: Integral equation methods in potential theory and elastostatics. 1th Ed. London, New York: Academic Press 1977Google Scholar
  8. 8.
    Saranen, J., Wendland, W.L.: On the asymptotic convergence of collocation methods with spline functions of even degree. Math. Comput.45, 91–108 (1985)Google Scholar
  9. 9.
    Schmidt, G.: On spline collocation methods for boundary integral equations in the plane. Math. Meth. Appl. Sci.7, 74–89 (1985)Google Scholar
  10. 10.
    Triebel, H.: Interpolation theory. Function spaces. Differential operators. 1th Ed. Berlin: Deutscher Verl. der Wissenschaften 1978Google Scholar
  11. 11.
    Wendland, W.L., Stephan, E., Hsiao, G.C.: On the integral equation method for the plane mixed boundary value problem of the Laplacian. Math. Meth. Appl. Sci.1, 265–321 (1979)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • G. Schmidt
    • 1
  • H. Strese
    • 1
  1. 1.Karl-Weierstraß-Institut für Mathematik der Akademie der Wissenschaften der DDRBerlin

Personalised recommendations