Numerische Mathematik

, Volume 36, Issue 2, pp 177–195 | Cite as

A divide and conquer method for the symmetric tridiagonal eigenproblem

  • J. J. M. Cuppen


A method is given for calculating the eigenvalues of a symmetric tridiagonal matrix. The method is shown to be stable and for a large class of matrices it is, asymptotically, faster by an order of magnitude than theQR method.

Subject Classifications

AMS (MOS): 65F15, 68C25 CR: 5.14, 5.25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bunch, J.R., Nielsen, C.P., Sorensen, D.C.: Rank one modification of the symmetric eigenproblem. Numer. Math.31, 31–48 (1978)Google Scholar
  2. 2.
    Bus, J.C., Dekker, T.J.: Two efficient algorithms with guaranteed convergence for finding a zero of a functions TOMS1, 330–345 (1975)Google Scholar
  3. 3.
    Golub, G.H.: Some modified mautrix eigenvalue problems. SIAM Rev.15, 318–334 (1973)Google Scholar
  4. 4.
    Gregory, R.T., Karney, D.L.: A collection of matrices for testing computational algorithms. New York: John Wiley, 1969Google Scholar
  5. 5.
    Numal, A library of numerical procedures in Algol 60, second revision. Mathematisch Centrum Amsterdam, 1977Google Scholar
  6. 6.
    Wilkinson, J.H.: The algebraic eigenvalue problem. Oxford: Clarendon Press 1965Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • J. J. M. Cuppen
    • 1
  1. 1.Instituut voor Toepassingen van de WiskundeUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations