Numerische Mathematik

, Volume 51, Issue 2, pp 237–250

Mixed finite elements for second order elliptic problems in three variables

  • Franco Brezzi
  • Jim DouglasJr.
  • Ricardo Durán
  • Michel Fortin
Article

Summary

Two families of mixed finite elements, one based on simplices and the other on cubes, are introduced as alternatives to the usual Raviart-Thomas-Nedelec spaces. These spaces are analogues of those introduced by Brezzi, Douglas, and Marini in two space variables. Error estimates inL2 andH−s are derived.

Subject Classifications

AMS(MOS): 65N30 CR: G1.8 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing, and error estimates. M2AN,19, 7–32 (1985)Google Scholar
  2. 2.
    Arnold, D.N., Brezzi, F., Douglas, J., Jr.: Peers: a new mixed finite element for plane elasticity. Japan J. Appl. Math.1, 347–367 (1984)Google Scholar
  3. 3.
    Brezzi, F., Douglas, J., Jr., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math.47, 217–235 (1985)Google Scholar
  4. 4.
    Brezzi, F., Douglas, J., Jr., Marini, L.D.: Variable degree mixed methods for secod order elliptic problems. Mat. Apl. Comput.4, 19–34 (1985)Google Scholar
  5. 5.
    Brown, D.C.: Alternating-direction iterative schemes for mixed finite element methods for second order elliptic problems. Thesis, University of Chicago 1982Google Scholar
  6. 6.
    Douglas, J., Jr.: Alternating direction methods for three space variables. Numer. Math.4, 41–63 (1962)Google Scholar
  7. 7.
    Douglas, J., Jr., Durán, R., Pietra, P.: Formulation of alternating-direction iterative methods for mixed methods in three space. Proceedings of the Simposium Internacional de Analisis Numérico, Madrid, September 1985Google Scholar
  8. 8.
    Douglas, J., Jr., Durán, R., Pietra, P.: Alternating-direction iteration for mixed finite element methods. Proceedings of the Seventh International Conference on Computing Methods in Applied Sciences and Engineering, Versailles, December 1985Google Scholar
  9. 9.
    Douglas, J., Jr., Pietra, P.: A description of some alternating-direction iterative techniques for mixed finite element methods. Proceedings. SIAM/SEG/SPE conference, Houston, January 1985Google Scholar
  10. 10.
    Douglas, J., Jr., Roberts, J.E.: Global estimates for mixed methods for second order elliptic equations. Math. Comput.44, 39–52 (1985)Google Scholar
  11. 11.
    Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev space. Math. Comput.34, 441–463 (1980)Google Scholar
  12. 12.
    Fraeijs de Veubeke, B.X.: Displacement and equilibrium models in the finite element method. In: Stress analysis (O.C. Zienkiewicz, G. Holister, eds.). New York: John Wiley 1965Google Scholar
  13. 13.
    Fraeijs de Veubeke, B.X.: Stress function approach. World Congress on the Finite Element Method in Structural Mechanics. Bournemouth, 1965Google Scholar
  14. 14.
    Girault, V., Raviart, P.A.: Finite element approximation of the Navier-Stokes equation. Lecture Notes in Mathematics, Vol. 749. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  15. 15.
    Nedelec, J.C.: Mixed finite elements inR 3. Numer. Math.35, 315–341 (1980)Google Scholar
  16. 16.
    Nedelec, J.C.: A new family of mixed finite elements inR 3 Numer. Math.50, 57–82 (1986)Google Scholar
  17. 17.
    Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg36, 9–15 (1970/1971)Google Scholar
  18. 18.
    Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. Mathematical aspects of the finite element method. Lecture Notes in Mathematics, Vol. 606. Berlin, Heidelberg, New York: Springer 1977Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Franco Brezzi
    • 1
  • Jim DouglasJr.
    • 2
  • Ricardo Durán
    • 2
  • Michel Fortin
    • 3
  1. 1.Dipartimento di Meccanica StrutturaleUniversità di Pavia, and Istituto di Analisi Numerica del C.N.R. di PaviaPaviaItaly
  2. 2.Department of MathematicsUniversity of ChicagoChicagoUSA
  3. 3.Départment de MathématiquesUniversité LavalQuébecCanada

Personalised recommendations