Numerische Mathematik

, Volume 36, Issue 3, pp 291–307 | Cite as

Least squares with a quadratic constraint

  • Walter Gander


We present the theory of the linear least squares problem with a quadratic constraint. New theorems characterizing properties of the solutions are given. A numerical application is discussed.

Subject Classifications

AMS(MOS): 65F20 CR: 5.14 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Elden, L.: Algorithms for the regularisation and constrained least squares methods. Bit17, 134–145 (1977)Google Scholar
  2. 2.
    Forsythe, G.E., Golub, G.H.: On the stationary values of a second degree polynomial on the unit sphere. J. Soc. Indust. Appl. Math.13, 1050–1068 (1965)Google Scholar
  3. 3.
    Gander, W.: On the linear least squares problem with a quadratic constraint. Habilitationsschrift ETH Zürich. STAN-CS-78-697, Stanford University, 1978Google Scholar
  4. 4.
    Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation. Technometrics21, 215–223 (1979)Google Scholar
  5. 5.
    Kahan, W.: Manuscript in Box 5G of the G. Forsythe Archive, Stanford Main Library (∼1965)Google Scholar
  6. 6.
    Lawson, C.L., Hanson, R.J.: Solving least squares problems. Englewood Cliffs, N.J.: Prentice Hall 1974Google Scholar
  7. 7.
    Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math.11, 431–441 (1963)Google Scholar
  8. 8.
    Moré, J.J.: The Levenberg-Marquardt algorithm: implementation and theory. Dundee Conference on Numerical Analysis (1977)Google Scholar
  9. 9.
    Reinsch, C.H.: Smoothing by spline functions. Numer. Math.10, 177–183 (1967)Google Scholar
  10. 10.
    Rutishauser, H.: Once again: the least square problem. Linear Algebra and Appl.1, 479–488 (1968)Google Scholar
  11. 11.
    Rutishauser, H.: Vorlesungen über Numerische Mathematik. (M. Gutknecht, Hrsg.) Basel: Birkhäuser 1976Google Scholar
  12. 12.
    Spjøtvoll, E.: A note on a théorem of Forsythe and Golub. SIAM J. Appl. Math.23, 307–311 (1972)Google Scholar
  13. 13.
    Tikhonov, A.N., Arsenin, V.Y.: Solution of ill posed problems. New York: Wiley, 1977Google Scholar
  14. 14.
    Van Loan, C.F.: Generalizing the singular value decomposition. SIAM J. Numer. Anal.13, 76–83 (1976)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Walter Gander
    • 1
  1. 1.Neu-TechnikumBuchsSwitzerland

Personalised recommendations