Numerische Mathematik

, Volume 35, Issue 3, pp 315–341

Mixed finite elements in ℝ3

  • J. C. Nedelec
Sign-Stability in Difference Schemes for Parabolic Initinal-Boundary Value Problems

Summary

We present here some new families of non conforming finite elements in ℝ3. These two families of finite elements, built on tetrahedrons or on cubes are respectively conforming in the spacesH(curl) andH(div). We give some applications of these elements for the approximation of Maxwell's equations and equations of elasticity.

Subject Classifications

AMS(MOS) 65N30 CR: 5.17 

First, we introduce some notations

K

is a tetrahedron or a cube, thevolume of which is\(\int\limits_K^{} {dx}\)

K

is its boundary

f

is a face ofK, thesurface of which is\(\int\limits_f^{} {dy}\)

a

is an edge, the length of which is\(\int\limits_a^{} {ds}\)

L2(K)

is the usual Hilbert space of square integrable functions defined onK

Hm(K)

{Φ∈L2(K); ∂αΦ∈L2(K); |α|≦m}, where α=(α1, α2, α3) is a multi-index; |α|=α123

curlu

∇∧u, (defined by using the distributional derivative) foru=(u1,u2,u3);uiL2(K)

H(curl)

{u∈(L2(K))3; curlu∈(L2(K))3}

divu

∇·u

H(div)

{u∈(L2(K))3; divuL2(K)}

Dku

is thek-th differential operator associated tou, which is a (k+1)-multilinear operator acting on ℝ3

k

is an index

k

is the linear space of polynomials, the degree of which is less or equal tok

σk

is the group of all permutations of the set {1, 2, ...,k}

c orcε

will stand for any constant depending possibly on ε

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adam JC, Gourdin Serveniere A, Nedelec JC (1980) Study of an implicit scheme for integrating Maxwell's equation. (in press)Google Scholar
  2. 2.
    Brezzi F (1974) On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO 8:129–151Google Scholar
  3. 3.
    Ciarlet PG (1978) The finite element method for elliptic problems. North Holland, Amsterdam, New YorkGoogle Scholar
  4. 4.
    Duvaut G, Lions JL (1972) Les inéquations en mécanique et en physique. Dunod, ParisGoogle Scholar
  5. 5.
    Fortin M (1977) An analysis of the convergence of mixed finite element methods. RAIRO 11:341–354Google Scholar
  6. 6.
    Glowinski R, Marroco A (1975) Sur l'approximation par éléments finis d'ordre un et la résolution par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires. Rapport de Recherche IRIA no 115Google Scholar
  7. 7.
    Petravic (1976) Numerical modeling of pulsar magnetospheres. Computer Physics Communications 12:9–19Google Scholar
  8. 8.
    Raviart PA, Thomas JM (1977) A mixed finite element method for 2nd order elliptic problems. In: Dold A, Eckmann B (eds). Mathematical aspects of finite element methods. Proceedings of the conference held in Rome, 10–12 Dec, 1975. Springer, Berlin Heidelberg New York (Lecture Notes in Mathematics vol 606)Google Scholar
  9. 9.
    Thomas JM (1977) Doctoral Thesis. Université de Paris VIGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • J. C. Nedelec
    • 1
  1. 1.Centre de Mathématiques Appliquées-Ecole PolytechniquePalaiseau CedexFrance

Personalised recommendations