Numerische Mathematik

, Volume 35, Issue 2, pp 175–187

A general extrapolation algorithm

  • C. Brezinski
Article

Summary

In this paper a general formalism for linear and rational extrapolation processes is developped. This formalism includes most of the sequence transformations actually used for convergence acceleration. A general recursive algorithm for implementing the method is given. Convergence results and convergence acceleration results are proved. The vector case and some other extensions are also studied.

Subject Classification

AMS(MOS): 65B, 65B05 CR:5.13, 5.19 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brezinski C (1971) Accélération de suites à convergence logarithmique. CR Acad Sc Paris, 273 A:727–730Google Scholar
  2. 2.
    Brezinski C (1975) Généralisations de la transformation de Shanks, de la table de Padé et de l'εalgorithme. Calcolo, 12:317–360Google Scholar
  3. 3.
    Brezinski C (1977) Accélération de la convergence en analyse numérique, (Lecture Notes in Mathematics vol 584). Springer, Berlin Heidelberg New YorkGoogle Scholar
  4. 4.
    Brezinski C (1978) Algorithmes d'accélération de la convergence. Etude numérique, Technip, ParisGoogle Scholar
  5. 5.
    Brezinski C (1979) Sur le calcul de certains rapports de déterminants. In: Wuytack L (ed) Padé approximation and its applications (Lecture Notes in Mathematics vol 765). Springer, Berlin Heidelberg New YorkGoogle Scholar
  6. 6.
    Cordellier F (1980) Analyse numérique des transformations de suites et de séries. Thèse, Université de Lille (in press)Google Scholar
  7. 7.
    Gantmacher FR (1960) The theory of matrices. Chelsea Publications, New YorkGoogle Scholar
  8. 8.
    Germain-Bonne B (1978) Estimation de la limite de suites et formalisation de procédés d'accélération de convergence. Thèse, Université de LilleGoogle Scholar
  9. 9.
    Gray HL, Atchison TA (1968) The generalizedG-transform. Math. Comput 22:595–606Google Scholar
  10. 10.
    Gray HL, Schucany WR (1969) Some limiting cases of theG-transformation. Math Comput 23:849–859Google Scholar
  11. 11.
    Håvie T (1979) Generalized Neville type extrapolation schemes. BIT 19:204–213Google Scholar
  12. 12.
    Laurent PJ (1964) Etude de procédés d'extrapolation en analyse numérique. Thèse, Université de GrenobleGoogle Scholar
  13. 13.
    Levin D (1973) Development of non-linear transformations for improving convergence of sequences. Internat J Comput Math B3:371–388Google Scholar
  14. 14.
    Mühlbach G (1978) The general Neville-Aitken algorithm and some applications. Numer Math 31:97–110Google Scholar
  15. 15.
    Pye WC, Atchison TA (1973) An algorithm for the computation of higher orderG-transformations. SIAM J Numer Anal 10:1–7Google Scholar
  16. 16.
    Shanks D (1955) Nonlinear transformations of divergent and slowly convergent sequences. J Math Phys 34:1–42Google Scholar
  17. 17.
    Sidi A (1979) Some properties of a generalization of the Richardson extrapolation process. Technical report 142, Technion, Haifa, IsraelGoogle Scholar
  18. 18.
    Smith DA, Ford WF (1979) Acceleration of linear and logarithmic convergence. SIAM J Numer Anal 16:223–240Google Scholar
  19. 19.
    Wynn P (1956) On a device for computing thee m(Sn) transformation. MTAC 10:91–96Google Scholar
  20. 20.
    Wynn P (1956) On a procrustean technique for the numerical transformation of slowly convergent sequences ans series. Proc Cambridge Phil Soc 52:663–671Google Scholar
  21. 21.
    Wynn P (1960) Confluent forms of certain nonlinear algorithms. Arch Math 11:223–234Google Scholar
  22. 22.
    Wynn P (1962) Acceleration technique in numerical analysis with particular reference to problems in one independant variable. Proc IFIP congress, North Holland Amsterdam, p 149Google Scholar
  23. 23.
    Wynn P (1966) On the convergence and stability of the epsilon algorithm. SIAM J Numer Anal 3:91–122Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • C. Brezinski
    • 1
  1. 1.UER IEEA-informatiqueUniversité de Lille 1Villeneuve d'Ascq cédexFrance

Personalised recommendations